Comparison of the diagnostic accuracy of resting-state fMRI driven machine learning algorithms in the detection of mild cognitive impairment.

Bolla, Gergo [Bolla, Gergő Levente (Orvostudomány), author] School of PhD Studies (SU); Berente, Dalida Borbala [Berente, Dalida Borbála (Orvosi tudományok), author] School of PhD Studies (SU); Országos Mentális, Ideggyógyászati és Idegsebés...; Andrássy, Anita [Andrássy, Anita (neuroradiológia), author] Országos Mentális, Ideggyógyászati és Idegsebés...; Zsuffa, Janos Andras [Zsuffa, János (Háziorvostan), author] Department of Family Medicine (SU / FM / C); Országos Mentális, Ideggyógyászati és Idegsebés...; Hidasi, Zoltan [Hidasi, Zoltán (Pszichiátria), author] Pszichiátriai és Pszichoterápiás Klinika (SU / FM / C); Csibri, Eva; Csukly, Gabor [Csukly, Gábor (Pszichiátria), author] Pszichiátriai és Pszichoterápiás Klinika (SU / FM / C); Országos Mentális, Ideggyógyászati és Idegsebés...; Kamondi, Anita [Kamondi, Anita (Idegtudományok), author] Department of Neurology (SU / FM / C); Országos Mentális, Ideggyógyászati és Idegsebés...; Institute of Neurology and Neurosurgery (Amerik... (OMIII); Kiss, Mate; Horvath, Andras Attila ✉ [Horváth, András Attila (neurológia), author] Anatómiai, Szövet- és Fejlődéstani Intézet (SU / FM / I)

English Article (Journal Article) Scientific
Published: SCIENTIFIC REPORTS 2045-2322 13 (1) Paper: 22285 , 16 p. 2023
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Identifiers
Fundings:
  • (2017-1.2.1-NKP-2017-00002.)
  • (NAP2022-I-9/2022)
  • (bo_78_20_2020) Funder: Bolyai János Kutatási Ösztöndíj
  • (Lendulet-2023_94)
  • (2019-2.1.7-ERA-NET-2020-00006) Funder: NKFI
Subjects:
  • Neurology
  • Neurological disorders (e.g. Alzheimer's disease, Huntington's disease, Parkinson's disease)
  • Radiology, nuclear medicine and medical imaging
Mild cognitive impairment (MCI) is a potential therapeutic window in the prevention of dementia; however, automated detection of early cognitive deterioration is an unresolved issue. The aim of our study was to compare various classification approaches to differentiate MCI patients from healthy controls, based on rs-fMRI data, using machine learning (ML) algorithms. Own dataset (from two centers) and ADNI database were used during the analysis. Three fMRI parameters were applied in five feature selection algorithms: local correlation, intrinsic connectivity, and fractional amplitude of low frequency fluctuations. Support vector machine (SVM) and random forest (RF) methods were applied for classification. We achieved a relatively wide range of 78-87% accuracy for the various feature selection methods with SVM combining the three rs-fMRI parameters. In the ADNI datasets case we can also see even 90% accuracy scores. RF provided a more harmonized result among the feature selection algorithms in both datasets with 80-84% accuracy for our local and 74-82% for the ADNI database. Despite some lower performance metrics of some algorithms, most of the results were positive and could be seen in two unrelated datasets which increase the validity of our methods. Our results highlight the potential of ML-based fMRI applications for automated diagnostic techniques to recognize MCI patients.
Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
2025-04-07 04:08