Deep learning-based prediction of right ventricular ejection fraction using 2D echocardiograms

Tokodi, M ✉ [Tokodi, Márton (kardiológia, echo...), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Magyar, B* [Magyar, Bálint (Informatika), szerző]; Soós, A; Takeuchi, M; Tolvaj, M [Tolvaj, Máté (Kardiológia, Echo...), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Lakatos, BK [Lakatos, Bálint (orvostudományok, ...), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Kitano, T; Nabeshima, Y; Fábián, A [Fábián, Alexandra (kardiológia), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Szigeti, MB; Horváth, A** [Horváth, András (mérnöki tudományok), szerző]; Merkely, B** [Merkely, Béla Péter (Kardiológia), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Sportorvostan Tanszék (SE / AOK / K); Kovács, A ✉ [Kovács, Attila (kardiológia, spor...), szerző] Városmajori Szív- és Érgyógyászati Klinika (SE / AOK / K); Kardiológia Központ - Kardiológiai Tanszék (SE / AOK / K); Sportorvostan Tanszék (SE / AOK / K)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: JACC-CARDIOVASCULAR IMAGING 1936-878X 1876-7591 16 (8) pp. 1005-1018 2023
  • SJR Scopus - Radiology, Nuclear Medicine and Imaging: D1
Azonosítók
Támogatások:
  • (2020-4.1.1.-TKP2020)
  • (Therapeutic Development and Bioimaging thematic programmes of the Semmelweis University)
  • (FK 142573) Támogató: NKFIH
  • (RRF-2.3.1-21-2022-00004)
BACKGROUND Evidence has shown the independent prognostic value of right ventricular (RV) function, even in patients with left-sided heart disease. The most widely used imaging technique to measure RV function is echocardiography; however, conventional 2-dimensional (2D) echocardiographic assessment is unable to leverage the same clinical information that 3-dimensional (3D) echocardiography-derived right ventricular ejection fraction (RVEF) can provide. OBJECTIVES The authors aimed to implement a deep learning (DL)-based tool to estimate RVEF from 2D echocardiographic videos. In addition, they benchmarked the tool's performance against human expert reading and evaluated the prognostic power of the predicted RVEF values. METHODS The authors retrospectively identified 831 patients with RVEF measured by 3D echocardiography. All 2D apical 4-chamber view echocardiographic videos of these patients were retrieved (n = 3,583), and each subject was assigned to either the training or the internal validation set (80:20 ratio). Using the videos, several spatiotemporal convolutional neural networks were trained to predict RVEF. The 3 best-performing networks were combined into an ensemble model, which was further evaluated in an external data set containing 1,493 videos of 365 patients with a median follow-up time of 1.9 years. RESULTS The ensemble model predicted RVEF with a mean absolute error of 4.57 percentage points in the internal and 5.54 percentage points in the external validation set. In the latter, the model identified RV dysfunction (defined as RVEF <45%) with an accuracy of 78.4%, which was comparable to an expert reader's visual assessment (77.0%; P = 0.678). The DL-predicted RVEF values were associated with major adverse cardiac events independent of age, sex, and left ventricular systolic function (HR: 0.924 [95% CI: 0.862-0.990]; P = 0.025). CONCLUSIONS Using 2D echocardiographic videos alone, the proposed DL-based tool can accurately assess RV function, with similar diagnostic and prognostic power as 3D imaging. (J Am Coll Cardiol Img 2023;16:1005-1018)(c) 2023 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-04-17 03:31