Detecting and classifying lesions in mammograms with Deep Learning.

Ribli, D ✉ [Ribli, Dezső (Fizika), szerző] Komplex Rendszerek Fizikája Tanszék (ELTE / TTK / FizCsill_I); Horvath, A [Horváth, Anna (belgyógyászat; im...), szerző] III. Sz. Belgyógyászati Klinika (SE / AOK / K); Unger, Z [Unger, Zsuzsa (radiológia), szerző] Radiológiai és Onkoterápiás Klinika (SE / AOK / K); Pollner, P [Pollner, Péter (Elméleti és matem...), szerző] MTA-ELTE Statisztikus és Biológiai Fizika Kutat... (ELTE / TTK / Fiz_I); Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Csabai, I [Csabai, István (Statisztikus fizika), szerző] Komplex Rendszerek Fizikája Tanszék (ELTE / TTK / FizCsill_I)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: SCIENTIFIC REPORTS 2045-2322 2045-2322 8 (1) Paper: 4165 , 7 p. 2018
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Azonosítók
Támogatások:
  • (FIEK_16-1-2016-0005)
Szakterületek:
  • Egyéb természettudományok
In the last two decades, Computer Aided Detection (CAD) systems were developed to help radiologists analyse screening mammograms, however benefits of current CAD technologies appear to be contradictory, therefore they should be improved to be ultimately considered useful. Since 2012, deep convolutional neural networks (CNN) have been a tremendous success in image recognition, reaching human performance. These methods have greatly surpassed the traditional approaches, which are similar to currently used CAD solutions. Deep CNN-s have the potential to revolutionize medical image analysis. We propose a CAD system based on one of the most successful object detection frameworks, Faster R-CNN. The system detects and classifies malignant or benign lesions on a mammogram without any human intervention. The proposed method sets the state of the art classification performance on the public INbreast database, AUC = 0.95. The approach described here has achieved 2nd place in the Digital Mammography DREAM Challenge with AUC = 0.85. When used as a detector, the system reaches high sensitivity with very few false positive marks per image on the INbreast dataset. Source code, the trained model and an OsiriX plugin are published online at https://github.com/riblidezso/frcnn_cad .
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2024-07-25 02:07