Theoretical Design, Synthesis, and In Vitro Neurobiological Applications of a Highly Efficient Two-Photon Caged GABA Validated on an Epileptic Case

Chiovini Balázs, Pálfi Dénes, Majoros Myrtill, Juhász Gábor, Szalay Gergely, Katona Gergely, Szőri Milán, Frigyesi Orsolya, Lukácsné Haveland Csilla, Szabó Gábor, Erdélyi Ferenc, Máté Zoltán, Szadai Zoltán, Madarász Miklós, Dékány Miklós, Csizmadia Imre G., Kovács Ervin, Rózsa Balázs, Mucsi Zoltán
Chiovini, Balázs ✉ ; Pálfi, Dénes* ; Majoros, Myrtill ; Juhász, Gábor ; Szalay, Gergely ; Katona, Gergely ; Szőri, Milán ; Frigyesi, Orsolya ; Lukácsné, Haveland Csilla ; Szabó, Gábor et al.
ACS OMEGA 6 : 23 pp. 15029-15045. , 17 p. (2021)
Zárolt Közlemény:32054633 Nyilvános Forrás Idéző Folyóiratcikk (Szakcikk ) Tudományos
Nyilvános idéző összesen: 15 | Független: 6 | Függő: 9 | Nem jelölt: 0 | WoS jelölt: 14 | Scopus jelölt: 13 | WoS/Scopus jelölt: 14 | DOI jelölt: 15
    In this paper, we present an additional, new cage-GABA compound, called 4-amino-1-(4′-dimethylaminoisopropoxy-5′,7′-dinitro-2′,3′-dihydro-indol-1-yl)-1-oxobutane-γ-aminobutyric acid (iDMPO-DNI-GABA), and currently, this compound is the only photoreagent, which can be applied for GABA uncaging without experimental compromises. By a systematic theoretical design and successful synthesis of several compounds, the best reagent exhibits a high two-photon efficiency within the 700–760 nm range with excellent pharmacological behavior, which proved to be suitable for a complex epileptic study. Quantum chemical design showed that the optimal length of the cationic side chain enhances the two-photon absorption by 1 order of magnitude due to the cooperating internal hydrogen bonding to the extra nitro group on the core. This feature increased solubility while suppressing membrane permeability. The efficiency was demonstrated in a systematic, wide range of in vitro single-cell neurophysiological experiments by electrophysiological as well as calcium imaging techniques. Scalable inhibitory ion currents were elicited by iDMPO-DNI-GABA with appropriate spatial–temporal precision, blocking both spontaneous and evoked cell activity with excellent efficiency. Additionally, to demonstrate its applicability in a real neurobiological study, we could smoothly and selectively modulate neuronal activities during artificial epileptic rhythms first time in a neural network of GCaMP6f transgenic mouse brain slices.