TY - JOUR AU - Lin, Peng-Cheng AU - Wang, Lin-Shan AU - Liang, Xue-Bing AU - Hu, Qiang AU - Wang, Li-Min AU - Qu, Xuan-Hui TI - Recent Advancements in Copper Infiltration Applied to Sintered Steel JF - SCIENCE OF ADVANCED MATERIALS J2 - SCI ADV MATER VL - 16 PY - 2024 IS - 2 SP - 149 EP - 158 PG - 10 SN - 1947-2935 DO - 10.1166/sam.2024.4625 UR - https://m2.mtmt.hu/api/publication/34684712 ID - 34684712 AB - Sintered steel is widely used in various industries, including automotive, aerospace, and construction machinery, due to its notable attributes such as high precision, wear resistance, efficient material utilization, and cost-effectiveness. However, the presence of pores hinders sintered steel from achieving a fully dense state, thereby restricting its broader applications. Copper infiltration enables the reduction or elimination of pores, minimizes stress concentration, and prevents microcrack formation. Consequently, this process significantly enhances the material’s density and mechanical properties, particularly its dynamic mechanical characteristics such as impact toughness and fatigue performance. This paper provides an overview of the copper infiltration development history in sintered steel, summarizes the factors including substrate, infiltrant, and infiltration process, and highlights the research progress in copper infiltration application in sintered steel. Furthermore, challenges associated with copper-infiltrated sintered steel are discussed, and recommendations for future development are presented. LA - English DB - MTMT ER - TY - JOUR AU - Kulkarni, Harshal AU - Dabhade, Vikram V. AU - Blais, Carl TI - Analysis of machining green compacts of a sinter-hardenable powder metallurgy steel: A perspective of material removal mechanism JF - CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY J2 - CIRP J MANUF SCI TECHNOL VL - 41 PY - 2023 SP - 430 EP - 445 PG - 16 SN - 1755-5817 DO - 10.1016/j.cirpj.2022.12.018 UR - https://m2.mtmt.hu/api/publication/33907816 ID - 33907816 AB - Green machining (machining green/un-sintered powder compacts) has prospects in dealing with poor machinability of sinter-hardened powder metallurgy (PM) steels. However, it has the limitation of resulting in a poor-quality machined surface and exit-edge (the edge from where the cutting tool leaves the workpiece) than that of counterparts machined post-sinter-hardening. The feasibility of overcoming the limitation using machining parameters is a scarcely explored area. Investigating this area through understanding the material removal mechanism constitutes the motivation of the present study. The study analyses the turning of green and sinter-hardened compacts prepared from FLC-4608 (Metal Powder Industries Federation denomination, Standard 35) steel powder-premix. Results indicated that, in green machining, a lower feed rate regulates the attribute of powder particles' plucking in the material removal mechanism and improves machined surface quality. Increased cutting velocity and feed rate were found to reduce the size of exit-edge damage (exit-edge-breakout) and improve edge quality. It was determined that these quality improvements could not feasibly achieve the machined surface and exit-edge quality comparable to a compact machined post-sinter-hardening. Nevertheless, green machining has significance in producing sinter-hardened PM components due to its advantages over machining sinter-hardened compacts, i.e., lower Fc (cutting force component in the cutting velocity direction) and favourable chip morphology, as identified in this investigation. The present study is potentially helpful to PM industries for green machining considerations in the manufacturing process flow. LA - English DB - MTMT ER - TY - JOUR AU - Kandavel, T. K. AU - Panneerselvam, T. AU - Musthaq, H. Mohamed AU - Ravikumar, M. TI - Investigating machinability characteristics of Fe-C-Cu and Fe-C-Mo P/M low alloy steels through cylindrical grinding operation JF - MATERIALS TODAY: PROCEEDINGS J2 - MATER TOD PROC VL - 66 PY - 2022 SP - 1389 EP - 1397 PG - 9 SN - 2214-7853 DO - 10.1016/j.matpr.2022.05.219 UR - https://m2.mtmt.hu/api/publication/33318570 ID - 33318570 AB - In the recent years of material innovation, Powder Metallurgy (P/M) materials have overwhelmed contribution in all industrial sectors. Machinability is a pre-requisite material characteristic to convert them into a functional part. In the present investigation, the effects of alloying elements and density on machinability of Fe-0.5%C plain carbon steels have been undertaken. Due to more industrial applications prospects, Fe-0.5%C-2%Cu and Fe-0.5%C-2%Mo low alloy steels have been considered, and cylindrical grinding operation has been used to study the machinability characteristics. For both P/M alloy steels, work speed, depth of cut and density are considered variable parameters to perform the operation using the L9 orthogonal array. The surface roughness value is assessed to ensure the effect of process parameters on machinability and to fix the optimal grinding conditions. The experimental results of Mo exhibit higher density (93.10%) and hardness (92 HRB) compared to the Cu added plain carbon steel, which has 92.15% and 91 HRB, respectively. The experimental results of the Cu alloyed plain carbon steel exhibits better machinability characteristics, 0.22 lm surface finish compared to the Mo alloyed steel with a 0.26 lm surface finish. The optimal working parameters for better surface finish achievable in both P/ M low alloy steels are work speed of 90 rpm and depth of cut of 0.01 mm with the highest possible theoretical density.Copyright (c) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Thermal Analysis and Energy Systems 2021. LA - English DB - MTMT ER - TY - JOUR AU - Kovács, Zsolt Ferenc AU - Viharos, Zsolt János AU - Kodácsy, János TI - Improvements of surface tribological properties by magnetic assisted ball burnishing JF - SURFACE AND COATINGS TECHNOLOGY J2 - SURF COAT TECH VL - 437 PY - 2022 PG - 12 SN - 0257-8972 DO - 10.1016/j.surfcoat.2022.128317 UR - https://m2.mtmt.hu/api/publication/32724905 ID - 32724905 LA - English DB - MTMT ER - TY - JOUR AU - Krishnamoorthy, Kandavel Thanjavur AU - Thangavel, Panneerselvam AU - Hajamaideen, Mohamed Musthaq TI - Effect of Density on the Machinability of Fe-C-Mo PM Low-Alloy Steel during Surface Grinding JF - POWDER METALLURGY AND METAL CERAMICS J2 - POWDER METALL MET C+ VL - 61 PY - 2022 IS - 1-2 SP - 128 EP - 134 PG - 7 SN - 1068-1302 DO - 10.1007/s11106-022-00300-1 UR - https://m2.mtmt.hu/api/publication/33318571 ID - 33318571 AB - Low-alloy steels prepared by PM methods are widely used in the automotive industry and commercial machinery to manufacture components for actual applications. The unique feature of PM materials is densification through deformation, which significantly enhances the mechanical properties of finished items. Machinability defines the way a material behaves during processing. Surface grinding is one of the traditional finishing processes, which may provide a better surface finish and narrow dimensional tolerance for machined components. The addition of molybdenum to low-alloy steels increases mechanical strength and machinability due to the nature of the alloying element. In this context, current experimental work focuses on the effect of densification on the machinability of the sintered Fe-0.5% C-2% Mo low-alloy steel. One sample was retained in the sintered state for the study, while four others were densified at different levels by uniaxial compaction. In this case, the maximum density of the pre-form was determined by the appearance of lateral cracks on the surface during the application of the incremental axial load for the densification process. Three sintered alloy steel preforms were subjected to cold upsetting by progressively applying three intermediate uniaxial loads. The density of as-sintered and deformed samples was measured according to Archimedes' principle. The surface grinding was performed on the as-sintered and densified specimens at constant machining parameters. After that, the surface roughness and hardness values were measured. It is found that an increase in density improved surface finish and hardness values of the preforms. The microstructure and surface morphology of the ground samples were also analyzed. LA - English DB - MTMT ER - TY - JOUR AU - Liang, Xiujuan AU - Ji, Haixu TI - Reliability of Friction and Wear Characteristics of Surface-Strengthened Iron-Based Powder Metallurgy Materials JF - INTEGRATED FERROELECTRICS J2 - INTEGR FERROELECTR VL - 229 PY - 2022 IS - 1 SP - 190 EP - 209 PG - 20 SN - 1058-4587 DO - 10.1080/10584587.2022.2074232 UR - https://m2.mtmt.hu/api/publication/33318572 ID - 33318572 AB - With the continuous improvement of metallurgical technology, iron-based powder surface strengthening has become one of the methods of making powder metallurgy. The iron-based powder can improve the friction and wear characteristics of metallurgical materials. This article mainly studies the methods that can strengthen the friction and wear characteristics of iron-based powders. Finally, the amorphous alloy method is used, and then the surface sulfide is used to reduce the friction coefficient and increase the surface hardness of the alloy. Through experiments on the control variables of the sulfurizing formula, the optimal sulfurizing formula is finally obtained. Then through the change of time and temperature, it is concluded that the friction coefficient can be reduced to 0.022 when the time is 3 h, and the wear scar depth is reduced to 0.019 mm. The effect is best when the temperature is 40 degrees C, and the friction coefficient can be reduced to about 0.02, the depth of the wear scar is also maintained at 0.019 mm. LA - English DB - MTMT ER - TY - JOUR AU - Kundrák, János AU - Karpuschewski, B. AU - Pálmay, Zoltán AU - Felhő, Csaba AU - Makkai, Tamás AU - Borysenko, D. TI - The energetic characteristics of milling with changing cross-section in the definition of specific cutting force by FEM method JF - CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY J2 - CIRP J MANUF SCI TECHNOL VL - 32 PY - 2021 SP - 61 EP - 69 PG - 9 SN - 1755-5817 DO - 10.1016/j.cirpj.2020.11.006 UR - https://m2.mtmt.hu/api/publication/31821481 ID - 31821481 N1 - Funding text 1: We would like to thank the German Research Foundation (DFG) for its support of the collaboration between Otto von Guericke University Magdeburg (Germany) and the University of Miskolc (Hungary) within the project “Inverse cutting technology”. The authors greatly appreciate the support of the Hungarian National Research, Development and Innovation Office – NKFIH (No. of Agreement: OTKA K 116876 ). The described article was carried out as part of the EFOP-3.6.1-16-00011 “Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialisation” project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund . AB - With cutting technology, including milling, new tasks must constantly be solved, for which the knowledge of the cutting force is necessary from the theoretical point of view and for the practical application of the technology. This article summarizes the results of a project to study the cutting force during milling. The technological analysis of milling was performed by FEM simulation, which was validated by measuring the cutting force. When milling, only one insert was placed in the cutter, the workpiece was C45 rolled steel, which was machined with different depths of cut ap and feed rates fz while the cross section Ac = ap · fz = 0.9 mm2 was kept constant. The calculations proved that the effect of the cross-section of the material deposited during milling, and thus the specific features of the technology, is well characterized by the chip ratio ap/fz. It has been shown that from the energy point of view it is expedient to avoid the chip ratio of ap/fz = 1 in the applied technology. It is preferable to set the value as far away as possible, preferably aiming to use ap/fz < 1. © 2020 CIRP LA - English DB - MTMT ER - TY - JOUR AU - Balázs, Barnabás Zoltán AU - Takács, Márton TI - Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel JF - INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY J2 - INT J ADV MANUFACT TECHNOL VL - 106 PY - 2020 SP - 5289 EP - 5305 PG - 17 SN - 0268-3768 DO - 10.1007/s00170-020-04991-x UR - https://m2.mtmt.hu/api/publication/31165128 ID - 31165128 LA - English DB - MTMT ER - TY - JOUR AU - Geier, Norbert AU - Pereszlai, Csongor TI - Analysis of Characteristics of Surface Roughness of Machined CFRP Composites JF - PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING J2 - PERIOD POLYTECH MECH ENG VL - 64 PY - 2020 IS - 1 SP - 67 EP - 80 PG - 14 SN - 0324-6051 DO - 10.3311/PPme.14436 UR - https://m2.mtmt.hu/api/publication/31034222 ID - 31034222 N1 - Funding Agency and Grant Number: EUEuropean Union (EU) [739592]; Higher Education Excellence Program of the Ministry of Human Capacities of Budapest University of Technology and Economics (BME FIKP-NANO); Fraisa; [2018-2.1.15-TET-PT-2018-00012] Funding text: This research was partly supported by the EU H2020-WIDESPREAD-01-2016-2017-TeamingPhase2-739592 project "Centre of Excellence in Production Informatics and Control" (EPIC). This work was partly supported by the Higher Education Excellence Program of the Ministry of Human Capacities in the frame of the Nanotechnology and Material Science research area of Budapest University of Technology and Economics (BME FIKP-NANO) and by the 2018-2.1.15-TET-PT-2018-00012 project. Furthermore, the authors acknowledge to Gyula Matyasi, Norbert Forintos, Barnabas Balazs and Tamas Ibriksz for their participation in the experimental work. Last, but not least authors are glad for the support provided by Fraisa. LA - English DB - MTMT ER - TY - JOUR AU - Yang, Dayong AU - Lu, Longsheng AU - Wan, Zhenping TI - Material Removal Mechanism of Green Machining on Powder Metallurgy Parts during Orthogonal Cutting JF - ADVANCES IN MATERIALS SCIENCE AND ENGINEERING J2 - ADV MATER SCI ENG VL - 2020 PY - 2020 PG - 9 SN - 1687-8434 DO - 10.1155/2020/1962602 UR - https://m2.mtmt.hu/api/publication/31484271 ID - 31484271 AB - Due to its energy-saving and cost-reducing characteristics, a novel green machining technique for powder metallurgy (PM) parts is attracting increasing concern. Unlike in the traditional PM machining technique, in the PM green-machining method arranges, the processing operation is performed before sintering. Since the pristine PM compacts are relatively soft because it just bonds the particles together, direct cutting on pristine PM compacts is a tool-saving and cost-effective manufacturing technique and its cutting mechanism is different from that of both solid plastic metals and conventional brittle materials because of the special characteristics of a discontinuous material. The influences of cutting parameters on machined surface roughness are investigated by orthogonal cutting experiments. The results show that the machined surface roughness decreases with increasing cutting thickness and rounded cutting edge radius and slightly increases with increasing rake angle. It is suggested that these results are contrary to the long-held notions of machined surface roughness. Moreover, a geometric model illustrating the PM green-machining process was established to reveal the mechanism of material removal and machined surface formation. This model shows that the material removal of PM is composed of particle shearing deformation, peeling, and ploughing/extruding. Finally, this machining model was validated through observations of machined surface morphology and chip morphology. LA - English DB - MTMT ER - TY - JOUR AU - Kulkarni, Harshal AU - Dabhade, Vikram V. TI - Green machining of powder-metallurgy-steels (PMS): An overview JF - JOURNAL OF MANUFACTURING PROCESSES J2 - J MANUFACT PROCES VL - 44 PY - 2019 SP - 1 EP - 18 PG - 18 SN - 1526-6125 DO - 10.1016/j.jmapro.2019.05.009 UR - https://m2.mtmt.hu/api/publication/30709979 ID - 30709979 LA - English DB - MTMT ER - TY - JOUR AU - Rechenko, D. S. AU - Kamenov, R. U. AU - Balova, D. G. AU - Aubakirova, A. K. AU - Chernykh, I. K. TI - The influence of sharpness of cutting tool on processing of steel 07X16H4B JF - Omsk Scientific Bulletin J2 - Omsk Scientific Bulletin VL - 168 PY - 2019 IS - 6 SP - 10 EP - 14 PG - 5 SN - 1813-8225 DO - 10.25206/1813-8225-2019-168-10-14 UR - https://m2.mtmt.hu/api/publication/31029704 ID - 31029704 LA - Russian DB - MTMT ER - TY - JOUR AU - Struzikiewicz, G. AU - Zebala, W. AU - Slodki, B. TI - Cutting parameters selection for sintered alloy AlSi10Mg longitudinal turning JF - MEASUREMENT J2 - MEASUREMENT VL - 138 PY - 2019 SP - 39 EP - 53 PG - 15 SN - 0263-2241 DO - 10.1016/j.measurement.2019.01.082 UR - https://m2.mtmt.hu/api/publication/31088174 ID - 31088174 AB - The paper presents issues concerning the machined surface quality obtained after turning of two parts made of AlSi10MG alloy, the first manufactured by laser sintering of powder, the second one made as a cast. Taguchi method has been applied in methodology. Sintered material showed the occurrence of breaches and burrs which negatively affected the roughness parameters and shape errors. The reason was incomplete remelting of sintered particles, which does not form a homogeneous structure and in which the cohesion forces are smaller than in the cast material. The algorithm for the feed value selection was developed considering the dimensional accuracy. A correction factor for the theoretical roughness value determination on the basis of the machined surface measurements was proposed. The algorithm was verified on the example of the shaft turning, making the reduction of the initial feed value by 55%, which also reduced the cutting force F-c by 47%. (C) 2019 Elsevier Ltd. All rights reserved. LA - English DB - MTMT ER - TY - THES AU - Biró, István TI - A forgácsleválasztás energetikai modelljének kiterjesztése nagy szilárdságú acél precíziós és mikroforgácsolási technológiájához PB - Budapesti Műszaki és Gazdaságtudományi Egyetem PY - 2018 SP - 165 UR - https://m2.mtmt.hu/api/publication/3383924 ID - 3383924 AB - A forgácsolás napjainkban és a hosszútávú jövőben is az alkatrészek gyártásának egyik leggyakrabban alkalmazott módszere. A műszaki termékeket jellemző miniatürizálás miatt egyre nagyobb hangsúly helyeződik a precíziós- és mikroforgácsolási eljárásokra, melyek során új, korszerű anyagok munkálandók meg. Doktori kutatásom során az S960QL minőségű, nagy szilárdságú szerkezeti acélon, szabályos élű szerszámmal végzett forgácsleválasztás körülményeit vizsgáltam. Ezt a forgácsolás energetikai jellemzőinek, azon belül a forgácsképzés és az ezzel járó deformációs folyamatok megvalósításához szükséges fajlagos forgácsolási erő értékelésével végeztem. A fajlagos erő modelljének olyan, a technológiai paraméterek függvényében történő kiterjesztését tűztem ki célul, melynek köszönhetően hatékonyan egyesíthető a már jól ismert makromegmunkálási zóna leírása a mikrométer nagyságrendű forgácsvastagság mellett történő forgácsoláséval. Kutatómunkám első lépéseként áttekintettem a vizsgált anyag minőségi csoportjának jellegzetességeit, illetve összefoglaltam azokat a folyamatjellemzőket és modellezési lehetőségeiket, melyek a forgácsolást a folyamat fenntartásának energiaszükséglete tekintetében jellemzik. Kutatási céljaim eléréséhez szisztematikus forgácsolási kísérleteket végeztem a technológiai paramétereknek adott tartományokon belül vett nagyszámú kombinációja mellett. Homlokmarási kísérleteket hajtottam végre annak érdekében, hogy a forgácsolás energetikai körülményeinek változását, a változás karakterisztikáját annak folyamatában vizsgálhassam. Ezt követően homlokbeszúró esztergálási teszteket realizáltam, melyeknek kettős feladata volt: egyrészt a marási kísérletekből kapott eredmények ellenőrzése, másrészt azon hipotéziseim igazolása, melyeket a homlokmarások adatainak kiértékelési eredményei és a vonatkozó szakirodalmi ismeretek összevetése alapján megfogalmaztam meg. Munkám eredményeként jegyezhető a megállapítás, miszerint az S960QL acél forgácsolása során a fajlagos forgácsolóerőnek az elméleti forgácsvastagság függvényében értelmezett görbéjében új szakaszhatár azonosítható a mikroméretű forgácsvastagság tartományán. Mérési adataim alapján azonosítottam a fajlagoserő-görbének az új szakaszhatár által határolt szakaszát a technológiai paraméterek vizsgált tartományára vonatkozóan, ahol a munkadarab-anyag felületi rétegének lokális rugalmas és képlékeny alakítása történik anyagleválasztás nélkül. Ily módon a szakaszhatár helye az anyagleválasztás alsó technológiai korlátját definiálja. Ezt alátámasztják a homlokbeszúró esztergálás kiértékelésének eredményei, melyeket célzottan úgy terveztem, hogy az anyagleválasztás során ténylegesen működő, deformálatlan forgácskeresztmetszet geometriai mérésére a forgácsolást követően lehetőségem legyen. Az ily módon validált homlokmarási adatok rámutattak, hogy az új szakaszhatárt azonosító forgácsvastagság értéke elsődlegesen az élenkénti előtolás, másodlagosan a forgácsoló sebesség növelésével növekszik. E jelenségek közvetetten azonosíthatók a szakirodalomban fellelhető független kutatási eredményekben is. Kutatómunkám további hozománya e tényszerű megállapítások mellett olyan kísérleti és kiértékelési módszer-együttes, mely lehetővé teszi a fajlagos forgácsolóerő részletes vizsgálatát mérési adatokra alapozva, kezelve az olyan tranziens jelenségeket is, mint a szerszámél belépése és kilépése az anyagból. A kiértékelési módszertanokat egyedi, jelen körülményekre specifikált szoftverekbe ágyaztam, biztosítva ezzel a mérési adatok hatékony és reprodukálható kiértékelését. A dolgozatban ismertetett kutatás folytatásaként említem újabb kísérletek elvégzését a technológiai paraméterek jelenleg nem vizsgált tartományán, továbbá az új tudományos megállapításaim érvényességének vizsgálatát más fémes anyagok esetére is. LA - Hungarian DB - MTMT ER -