@article{MTMT:34684712, title = {Recent Advancements in Copper Infiltration Applied to Sintered Steel}, url = {https://m2.mtmt.hu/api/publication/34684712}, author = {Lin, Peng-Cheng and Wang, Lin-Shan and Liang, Xue-Bing and Hu, Qiang and Wang, Li-Min and Qu, Xuan-Hui}, doi = {10.1166/sam.2024.4625}, journal-iso = {SCI ADV MATER}, journal = {SCIENCE OF ADVANCED MATERIALS}, volume = {16}, unique-id = {34684712}, issn = {1947-2935}, abstract = {Sintered steel is widely used in various industries, including automotive, aerospace, and construction machinery, due to its notable attributes such as high precision, wear resistance, efficient material utilization, and cost-effectiveness. However, the presence of pores hinders sintered steel from achieving a fully dense state, thereby restricting its broader applications. Copper infiltration enables the reduction or elimination of pores, minimizes stress concentration, and prevents microcrack formation. Consequently, this process significantly enhances the material’s density and mechanical properties, particularly its dynamic mechanical characteristics such as impact toughness and fatigue performance. This paper provides an overview of the copper infiltration development history in sintered steel, summarizes the factors including substrate, infiltrant, and infiltration process, and highlights the research progress in copper infiltration application in sintered steel. Furthermore, challenges associated with copper-infiltrated sintered steel are discussed, and recommendations for future development are presented.}, year = {2024}, eissn = {1947-2943}, pages = {149-158} } @article{MTMT:33907816, title = {Analysis of machining green compacts of a sinter-hardenable powder metallurgy steel: A perspective of material removal mechanism}, url = {https://m2.mtmt.hu/api/publication/33907816}, author = {Kulkarni, Harshal and Dabhade, Vikram V. and Blais, Carl}, doi = {10.1016/j.cirpj.2022.12.018}, journal-iso = {CIRP J MANUF SCI TECHNOL}, journal = {CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY}, volume = {41}, unique-id = {33907816}, issn = {1755-5817}, abstract = {Green machining (machining green/un-sintered powder compacts) has prospects in dealing with poor machinability of sinter-hardened powder metallurgy (PM) steels. However, it has the limitation of resulting in a poor-quality machined surface and exit-edge (the edge from where the cutting tool leaves the workpiece) than that of counterparts machined post-sinter-hardening. The feasibility of overcoming the limitation using machining parameters is a scarcely explored area. Investigating this area through understanding the material removal mechanism constitutes the motivation of the present study. The study analyses the turning of green and sinter-hardened compacts prepared from FLC-4608 (Metal Powder Industries Federation denomination, Standard 35) steel powder-premix. Results indicated that, in green machining, a lower feed rate regulates the attribute of powder particles' plucking in the material removal mechanism and improves machined surface quality. Increased cutting velocity and feed rate were found to reduce the size of exit-edge damage (exit-edge-breakout) and improve edge quality. It was determined that these quality improvements could not feasibly achieve the machined surface and exit-edge quality comparable to a compact machined post-sinter-hardening. Nevertheless, green machining has significance in producing sinter-hardened PM components due to its advantages over machining sinter-hardened compacts, i.e., lower Fc (cutting force component in the cutting velocity direction) and favourable chip morphology, as identified in this investigation. The present study is potentially helpful to PM industries for green machining considerations in the manufacturing process flow.}, keywords = {Machinability; Green machining; Sinter-hardenable steels; Sinter -hardened steels; Powder metallurgy steels}, year = {2023}, eissn = {1755-5817}, pages = {430-445} } @article{MTMT:33318570, title = {Investigating machinability characteristics of Fe-C-Cu and Fe-C-Mo P/M low alloy steels through cylindrical grinding operation}, url = {https://m2.mtmt.hu/api/publication/33318570}, author = {Kandavel, T. K. and Panneerselvam, T. and Musthaq, H. Mohamed and Ravikumar, M.}, doi = {10.1016/j.matpr.2022.05.219}, journal-iso = {MATER TOD PROC}, journal = {MATERIALS TODAY: PROCEEDINGS}, volume = {66}, unique-id = {33318570}, issn = {2214-7853}, abstract = {In the recent years of material innovation, Powder Metallurgy (P/M) materials have overwhelmed contribution in all industrial sectors. Machinability is a pre-requisite material characteristic to convert them into a functional part. In the present investigation, the effects of alloying elements and density on machinability of Fe-0.5%C plain carbon steels have been undertaken. Due to more industrial applications prospects, Fe-0.5%C-2%Cu and Fe-0.5%C-2%Mo low alloy steels have been considered, and cylindrical grinding operation has been used to study the machinability characteristics. For both P/M alloy steels, work speed, depth of cut and density are considered variable parameters to perform the operation using the L9 orthogonal array. The surface roughness value is assessed to ensure the effect of process parameters on machinability and to fix the optimal grinding conditions. The experimental results of Mo exhibit higher density (93.10%) and hardness (92 HRB) compared to the Cu added plain carbon steel, which has 92.15% and 91 HRB, respectively. The experimental results of the Cu alloyed plain carbon steel exhibits better machinability characteristics, 0.22 lm surface finish compared to the Mo alloyed steel with a 0.26 lm surface finish. The optimal working parameters for better surface finish achievable in both P/ M low alloy steels are work speed of 90 rpm and depth of cut of 0.01 mm with the highest possible theoretical density.Copyright (c) 2022 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the International Conference on Thermal Analysis and Energy Systems 2021.}, keywords = {DENSITY; Surface roughness; Powder Metallurgy; Machinability; Cylindrical grinding; Low alloy steels}, year = {2022}, pages = {1389-1397} } @article{MTMT:32724905, title = {Improvements of surface tribological properties by magnetic assisted ball burnishing}, url = {https://m2.mtmt.hu/api/publication/32724905}, author = {Kovács, Zsolt Ferenc and Viharos, Zsolt János and Kodácsy, János}, doi = {10.1016/j.surfcoat.2022.128317}, journal-iso = {SURF COAT TECH}, journal = {SURFACE AND COATINGS TECHNOLOGY}, volume = {437}, unique-id = {32724905}, issn = {0257-8972}, year = {2022}, eissn = {1879-3347}, orcid-numbers = {Kovács, Zsolt Ferenc/0000-0002-6995-6508; Viharos, Zsolt János/0000-0002-9561-6857} } @article{MTMT:33318571, title = {Effect of Density on the Machinability of Fe-C-Mo PM Low-Alloy Steel during Surface Grinding}, url = {https://m2.mtmt.hu/api/publication/33318571}, author = {Krishnamoorthy, Kandavel Thanjavur and Thangavel, Panneerselvam and Hajamaideen, Mohamed Musthaq}, doi = {10.1007/s11106-022-00300-1}, journal-iso = {POWDER METALL MET C+}, journal = {POWDER METALLURGY AND METAL CERAMICS}, volume = {61}, unique-id = {33318571}, issn = {1068-1302}, abstract = {Low-alloy steels prepared by PM methods are widely used in the automotive industry and commercial machinery to manufacture components for actual applications. The unique feature of PM materials is densification through deformation, which significantly enhances the mechanical properties of finished items. Machinability defines the way a material behaves during processing. Surface grinding is one of the traditional finishing processes, which may provide a better surface finish and narrow dimensional tolerance for machined components. The addition of molybdenum to low-alloy steels increases mechanical strength and machinability due to the nature of the alloying element. In this context, current experimental work focuses on the effect of densification on the machinability of the sintered Fe-0.5% C-2% Mo low-alloy steel. One sample was retained in the sintered state for the study, while four others were densified at different levels by uniaxial compaction. In this case, the maximum density of the pre-form was determined by the appearance of lateral cracks on the surface during the application of the incremental axial load for the densification process. Three sintered alloy steel preforms were subjected to cold upsetting by progressively applying three intermediate uniaxial loads. The density of as-sintered and deformed samples was measured according to Archimedes' principle. The surface grinding was performed on the as-sintered and densified specimens at constant machining parameters. After that, the surface roughness and hardness values were measured. It is found that an increase in density improved surface finish and hardness values of the preforms. The microstructure and surface morphology of the ground samples were also analyzed.}, keywords = {Surface roughness; Powder Metallurgy; Densification; Machinability; surface grinding; Low-alloy steel}, year = {2022}, eissn = {1573-9066}, pages = {128-134} } @article{MTMT:33318572, title = {Reliability of Friction and Wear Characteristics of Surface-Strengthened Iron-Based Powder Metallurgy Materials}, url = {https://m2.mtmt.hu/api/publication/33318572}, author = {Liang, Xiujuan and Ji, Haixu}, doi = {10.1080/10584587.2022.2074232}, journal-iso = {INTEGR FERROELECTR}, journal = {INTEGRATED FERROELECTRICS}, volume = {229}, unique-id = {33318572}, issn = {1058-4587}, abstract = {With the continuous improvement of metallurgical technology, iron-based powder surface strengthening has become one of the methods of making powder metallurgy. The iron-based powder can improve the friction and wear characteristics of metallurgical materials. This article mainly studies the methods that can strengthen the friction and wear characteristics of iron-based powders. Finally, the amorphous alloy method is used, and then the surface sulfide is used to reduce the friction coefficient and increase the surface hardness of the alloy. Through experiments on the control variables of the sulfurizing formula, the optimal sulfurizing formula is finally obtained. Then through the change of time and temperature, it is concluded that the friction coefficient can be reduced to 0.022 when the time is 3 h, and the wear scar depth is reduced to 0.019 mm. The effect is best when the temperature is 40 degrees C, and the friction coefficient can be reduced to about 0.02, the depth of the wear scar is also maintained at 0.019 mm.}, keywords = {Iron-based powder; powder metallurgy materials; research on wear characteristics; surface strengthening of materials}, year = {2022}, eissn = {1607-8489}, pages = {190-209} } @article{MTMT:31821481, title = {The energetic characteristics of milling with changing cross-section in the definition of specific cutting force by FEM method}, url = {https://m2.mtmt.hu/api/publication/31821481}, author = {Kundrák, János and Karpuschewski, B. and Pálmay, Zoltán and Felhő, Csaba and Makkai, Tamás and Borysenko, D.}, doi = {10.1016/j.cirpj.2020.11.006}, journal-iso = {CIRP J MANUF SCI TECHNOL}, journal = {CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY}, volume = {32}, unique-id = {31821481}, issn = {1755-5817}, abstract = {With cutting technology, including milling, new tasks must constantly be solved, for which the knowledge of the cutting force is necessary from the theoretical point of view and for the practical application of the technology. This article summarizes the results of a project to study the cutting force during milling. The technological analysis of milling was performed by FEM simulation, which was validated by measuring the cutting force. When milling, only one insert was placed in the cutter, the workpiece was C45 rolled steel, which was machined with different depths of cut ap and feed rates fz while the cross section Ac = ap · fz = 0.9 mm2 was kept constant. The calculations proved that the effect of the cross-section of the material deposited during milling, and thus the specific features of the technology, is well characterized by the chip ratio ap/fz. It has been shown that from the energy point of view it is expedient to avoid the chip ratio of ap/fz = 1 in the applied technology. It is preferable to set the value as far away as possible, preferably aiming to use ap/fz < 1. © 2020 CIRP}, keywords = {Cutting; finite element method; Milling (machining); Cutting forces; Milling; FEM analysis; Cutting force; FEM simulations; Face milling; Specific cutting force; Cutting technology; Theoretical points; Chip ratio; Changing cross section; Energetic characteristics; Energy point; Rolled steel}, year = {2021}, eissn = {1755-5817}, pages = {61-69}, orcid-numbers = {Felhő, Csaba/0000-0003-0997-666X} } @article{MTMT:31165128, title = {Experimental investigation and optimisation of the micro milling process of hardened hot-work tool steel}, url = {https://m2.mtmt.hu/api/publication/31165128}, author = {Balázs, Barnabás Zoltán and Takács, Márton}, doi = {10.1007/s00170-020-04991-x}, journal-iso = {INT J ADV MANUFACT TECHNOL}, journal = {INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY}, volume = {106}, unique-id = {31165128}, issn = {0268-3768}, year = {2020}, eissn = {1433-3015}, pages = {5289-5305}, orcid-numbers = {Balázs, Barnabás Zoltán/0000-0001-5235-1388; Takács, Márton/0000-0001-6882-1540} } @article{MTMT:31034222, title = {Analysis of Characteristics of Surface Roughness of Machined CFRP Composites}, url = {https://m2.mtmt.hu/api/publication/31034222}, author = {Geier, Norbert and Pereszlai, Csongor}, doi = {10.3311/PPme.14436}, journal-iso = {PERIOD POLYTECH MECH ENG}, journal = {PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING}, volume = {64}, unique-id = {31034222}, issn = {0324-6051}, year = {2020}, eissn = {1587-379X}, pages = {67-80}, orcid-numbers = {Geier, Norbert/0000-0001-7937-7246; Pereszlai, Csongor/0000-0002-2336-6457} } @article{MTMT:31484271, title = {Material Removal Mechanism of Green Machining on Powder Metallurgy Parts during Orthogonal Cutting}, url = {https://m2.mtmt.hu/api/publication/31484271}, author = {Yang, Dayong and Lu, Longsheng and Wan, Zhenping}, doi = {10.1155/2020/1962602}, journal-iso = {ADV MATER SCI ENG}, journal = {ADVANCES IN MATERIALS SCIENCE AND ENGINEERING}, volume = {2020}, unique-id = {31484271}, issn = {1687-8434}, abstract = {Due to its energy-saving and cost-reducing characteristics, a novel green machining technique for powder metallurgy (PM) parts is attracting increasing concern. Unlike in the traditional PM machining technique, in the PM green-machining method arranges, the processing operation is performed before sintering. Since the pristine PM compacts are relatively soft because it just bonds the particles together, direct cutting on pristine PM compacts is a tool-saving and cost-effective manufacturing technique and its cutting mechanism is different from that of both solid plastic metals and conventional brittle materials because of the special characteristics of a discontinuous material. The influences of cutting parameters on machined surface roughness are investigated by orthogonal cutting experiments. The results show that the machined surface roughness decreases with increasing cutting thickness and rounded cutting edge radius and slightly increases with increasing rake angle. It is suggested that these results are contrary to the long-held notions of machined surface roughness. Moreover, a geometric model illustrating the PM green-machining process was established to reveal the mechanism of material removal and machined surface formation. This model shows that the material removal of PM is composed of particle shearing deformation, peeling, and ploughing/extruding. Finally, this machining model was validated through observations of machined surface morphology and chip morphology.}, year = {2020}, eissn = {1687-8442} } @article{MTMT:30709979, title = {Green machining of powder-metallurgy-steels (PMS): An overview}, url = {https://m2.mtmt.hu/api/publication/30709979}, author = {Kulkarni, Harshal and Dabhade, Vikram V.}, doi = {10.1016/j.jmapro.2019.05.009}, journal-iso = {J MANUFACT PROCES}, journal = {JOURNAL OF MANUFACTURING PROCESSES}, volume = {44}, unique-id = {30709979}, issn = {1526-6125}, keywords = {Machinability; Powder metallurgy steels (PMS); Sintered/sinter-hardened steels; Green strength; Green machining; Green machinability}, year = {2019}, eissn = {2212-4616}, pages = {1-18} } @article{MTMT:31029704, title = {The influence of sharpness of cutting tool on processing of steel 07X16H4B}, url = {https://m2.mtmt.hu/api/publication/31029704}, author = {Rechenko, D. S. and Kamenov, R. U. and Balova, D. G. and Aubakirova, A. K. and Chernykh, I. K.}, doi = {10.25206/1813-8225-2019-168-10-14}, journal-iso = {Omsk Scientific Bulletin}, journal = {Omsk Scientific Bulletin}, volume = {168}, unique-id = {31029704}, issn = {1813-8225}, year = {2019}, pages = {10-14} } @article{MTMT:31088174, title = {Cutting parameters selection for sintered alloy AlSi10Mg longitudinal turning}, url = {https://m2.mtmt.hu/api/publication/31088174}, author = {Struzikiewicz, G. and Zebala, W. and Slodki, B.}, doi = {10.1016/j.measurement.2019.01.082}, journal-iso = {MEASUREMENT}, journal = {MEASUREMENT}, volume = {138}, unique-id = {31088174}, issn = {0263-2241}, abstract = {The paper presents issues concerning the machined surface quality obtained after turning of two parts made of AlSi10MG alloy, the first manufactured by laser sintering of powder, the second one made as a cast. Taguchi method has been applied in methodology. Sintered material showed the occurrence of breaches and burrs which negatively affected the roughness parameters and shape errors. The reason was incomplete remelting of sintered particles, which does not form a homogeneous structure and in which the cohesion forces are smaller than in the cast material. The algorithm for the feed value selection was developed considering the dimensional accuracy. A correction factor for the theoretical roughness value determination on the basis of the machined surface measurements was proposed. The algorithm was verified on the example of the shaft turning, making the reduction of the initial feed value by 55%, which also reduced the cutting force F-c by 47%. (C) 2019 Elsevier Ltd. All rights reserved.}, keywords = {Turning; Surface roughness; surface quality; Sintered aluminum; Shape-dimensional accuracy}, year = {2019}, eissn = {1873-412X}, pages = {39-53} } @mastersthesis{MTMT:3383924, title = {A forgácsleválasztás energetikai modelljének kiterjesztése nagy szilárdságú acél precíziós és mikroforgácsolási technológiájához}, url = {https://m2.mtmt.hu/api/publication/3383924}, author = {Biró, István}, publisher = {Budapest University of Technology and Economics}, unique-id = {3383924}, abstract = {A forgácsolás napjainkban és a hosszútávú jövőben is az alkatrészek gyártásának egyik leggyakrabban alkalmazott módszere. A műszaki termékeket jellemző miniatürizálás miatt egyre nagyobb hangsúly helyeződik a precíziós- és mikroforgácsolási eljárásokra, melyek során új, korszerű anyagok munkálandók meg. Doktori kutatásom során az S960QL minőségű, nagy szilárdságú szerkezeti acélon, szabályos élű szerszámmal végzett forgácsleválasztás körülményeit vizsgáltam. Ezt a forgácsolás energetikai jellemzőinek, azon belül a forgácsképzés és az ezzel járó deformációs folyamatok megvalósításához szükséges fajlagos forgácsolási erő értékelésével végeztem. A fajlagos erő modelljének olyan, a technológiai paraméterek függvényében történő kiterjesztését tűztem ki célul, melynek köszönhetően hatékonyan egyesíthető a már jól ismert makromegmunkálási zóna leírása a mikrométer nagyságrendű forgácsvastagság mellett történő forgácsoláséval. Kutatómunkám első lépéseként áttekintettem a vizsgált anyag minőségi csoportjának jellegzetességeit, illetve összefoglaltam azokat a folyamatjellemzőket és modellezési lehetőségeiket, melyek a forgácsolást a folyamat fenntartásának energiaszükséglete tekintetében jellemzik. Kutatási céljaim eléréséhez szisztematikus forgácsolási kísérleteket végeztem a technológiai paramétereknek adott tartományokon belül vett nagyszámú kombinációja mellett. Homlokmarási kísérleteket hajtottam végre annak érdekében, hogy a forgácsolás energetikai körülményeinek változását, a változás karakterisztikáját annak folyamatában vizsgálhassam. Ezt követően homlokbeszúró esztergálási teszteket realizáltam, melyeknek kettős feladata volt: egyrészt a marási kísérletekből kapott eredmények ellenőrzése, másrészt azon hipotéziseim igazolása, melyeket a homlokmarások adatainak kiértékelési eredményei és a vonatkozó szakirodalmi ismeretek összevetése alapján megfogalmaztam meg. Munkám eredményeként jegyezhető a megállapítás, miszerint az S960QL acél forgácsolása során a fajlagos forgácsolóerőnek az elméleti forgácsvastagság függvényében értelmezett görbéjében új szakaszhatár azonosítható a mikroméretű forgácsvastagság tartományán. Mérési adataim alapján azonosítottam a fajlagoserő-görbének az új szakaszhatár által határolt szakaszát a technológiai paraméterek vizsgált tartományára vonatkozóan, ahol a munkadarab-anyag felületi rétegének lokális rugalmas és képlékeny alakítása történik anyagleválasztás nélkül. Ily módon a szakaszhatár helye az anyagleválasztás alsó technológiai korlátját definiálja. Ezt alátámasztják a homlokbeszúró esztergálás kiértékelésének eredményei, melyeket célzottan úgy terveztem, hogy az anyagleválasztás során ténylegesen működő, deformálatlan forgácskeresztmetszet geometriai mérésére a forgácsolást követően lehetőségem legyen. Az ily módon validált homlokmarási adatok rámutattak, hogy az új szakaszhatárt azonosító forgácsvastagság értéke elsődlegesen az élenkénti előtolás, másodlagosan a forgácsoló sebesség növelésével növekszik. E jelenségek közvetetten azonosíthatók a szakirodalomban fellelhető független kutatási eredményekben is. Kutatómunkám további hozománya e tényszerű megállapítások mellett olyan kísérleti és kiértékelési módszer-együttes, mely lehetővé teszi a fajlagos forgácsolóerő részletes vizsgálatát mérési adatokra alapozva, kezelve az olyan tranziens jelenségeket is, mint a szerszámél belépése és kilépése az anyagból. A kiértékelési módszertanokat egyedi, jelen körülményekre specifikált szoftverekbe ágyaztam, biztosítva ezzel a mérési adatok hatékony és reprodukálható kiértékelését. A dolgozatban ismertetett kutatás folytatásaként említem újabb kísérletek elvégzését a technológiai paraméterek jelenleg nem vizsgált tartományán, továbbá az új tudományos megállapításaim érvényességének vizsgálatát más fémes anyagok esetére is.}, year = {2018}, orcid-numbers = {Biró, István/0000-0002-5616-0973} }