TY - JOUR AU - Sollazzo, Germano AU - Nikolouli, Katerina AU - Gouvi, Georgia AU - Aumann, Roswitha A. AU - Schetelig, Marc F. AU - Bourtzis, Kostas TI - Deep orange gene editing triggers temperature-sensitive lethal phenotypes in Ceratitis capitata JF - BMC BIOTECHNOLOGY J2 - BMC BIOTECHNOL VL - 24 PY - 2024 IS - 1 PG - 15 SN - 1472-6750 DO - 10.1186/s12896-024-00832-x UR - https://m2.mtmt.hu/api/publication/34640534 ID - 34640534 LA - English DB - MTMT ER - TY - JOUR AU - Boda, Attila AU - Varga, Luca Petra AU - Nagy, Anikó Zsuzsanna AU - Szenci, Győző AU - Csizmadia, Tamás AU - Lőrincz, Péter AU - Juhász, Gábor TI - Rab26 controls secretory granule maturation and breakdown in Drosophila JF - CELLULAR AND MOLECULAR LIFE SCIENCES J2 - CELL MOL LIFE SCI VL - 80 PY - 2023 IS - 1 PG - 15 SN - 1420-682X DO - 10.1007/s00018-022-04674-8 UR - https://m2.mtmt.hu/api/publication/33542161 ID - 33542161 N1 - Export Date: 17 January 2023 CODEN: CMLSF AB - At the onset of Drosophila metamorphosis, plenty of secretory glue granules are released from salivary gland cells and the glue is deposited on the ventral side of the forming (pre)pupa to attach it to a dry surface. Prior to this, a poorly understood maturation process takes place during which secretory granules gradually grow via homotypic fusions, and their contents are reorganized. Here we show that the small GTPase Rab26 localizes to immature (smaller, non-acidic) glue granules and its presence prevents vesicle acidification. Rab26 mutation accelerates the maturation, acidification and release of these secretory vesicles as well as the lysosomal breakdown (crinophagy) of residual, non-released glue granules. Strikingly, loss of Mon1, an activator of the late endosomal and lysosomal fusion factor Rab7, results in Rab26 remaining associated even with the large glue granules and a concomitant defect in glue release, similar to the effects of Rab26 overexpression. Our data thus identify Rab26 as a key regulator of secretory vesicle maturation that promotes early steps (vesicle growth) and inhibits later steps (lysosomal transport, acidification, content reorganization, release, and breakdown), which is counteracted by Mon1. LA - English DB - MTMT ER - TY - JOUR AU - Dutta, S.B. AU - Linneweber, G.A. AU - Andriatsilavo, M. AU - Hiesinger, P.R. AU - Hassan, B.A. TI - EGFR-dependent suppression of synaptic autophagy is required for neuronal circuit development JF - CURRENT BIOLOGY J2 - CURR BIOL VL - 33 PY - 2023 IS - 3 SP - 517 EP - 532.e5 SN - 0960-9822 DO - 10.1016/j.cub.2022.12.039 UR - https://m2.mtmt.hu/api/publication/33693454 ID - 33693454 N1 - Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié Salpêtrière, Paris, 75013, France Division of Neurobiology, Free University of Berlin, Berlin, 14195, Germany Einstein-BIH, Charité Universitätsmedizin, Berlin, 10117, Germany Export Date: 10 March 2023 CODEN: CUBLE Correspondence Address: Hiesinger, P.R.; Division of Neurobiology, Germany; email: prh@zedat.fu-berlin.de Correspondence Address: Hassan, B.A.; Institut du Cerveau-Paris Brain Institute (ICM), France; email: bassem.hassan@icm-institute.org LA - English DB - MTMT ER - TY - JOUR AU - Maruzs, Tamás AU - Feil-Börcsök, Dalma AU - Lakatos, Enikő AU - Juhász, Gábor AU - Blastyák, András AU - Hargitai, Dávid AU - Jean, Steve AU - Lőrincz, Péter AU - Juhász, Gábor TI - Interaction of the sorting nexin 25 homologue Snazarus with Rab11 balances endocytic and secretory transport and maintains the ultrafiltration diaphragm in nephrocytes JF - MOLECULAR BIOLOGY OF THE CELL J2 - MOL BIOL CELL VL - 34 PY - 2023 IS - 9 PG - 14 SN - 1059-1524 DO - 10.1091/mbc.E22-09-0421 UR - https://m2.mtmt.hu/api/publication/34021340 ID - 34021340 N1 - Funding Agency and Grant Number: National Research Development and Innovation Office (NKFIH) of Hungary [PD135611, UNKP-22-2-III-ELTE-702, FK138851, Elvonal KKP129797]; National Laboratory of Biotechnology [2022-2.1.1-NL-2022-00008]; Eotvos Lorand University Excellence Fund [EKA 2022/045-P101-2]; National Academy of Scientist Education under the sponsorship of the Hungarian Ministry of Innovation and Technology [FEIF/646-4/2021-ITM_SZERZ] Funding text: We thank Szilvia Bozso and Monika Truszka for technical assistance. We thank Mike W. Henne for suggestions and for providing reagents and Michael Krahn and Thomas L. Schwarz for providing reagents. This work was supported by the National Research Development and Innovation Office (NKFIH) of Hungary with PD135611 grant to T.M., UNKP-22-2-III-ELTE-702 grant to D.H., FK138851 grant to P.L., and Elvonal KKP129797 and the National Laboratory of Biotechnology 2022-2.1.1-NL-2022-00008 grants to G.J. The work was also supported by the Eotvos Lorand University Excellence Fund (EKA 2022/045-P101-2) to P.L.. This research work was conducted with additional support from the National Academy of Scientist Education under the sponsorship of the Hungarian Ministry of Innovation and Technology (FEIF/646-4/2021-ITM_SZERZ). AB - Proper balance of exocytosis and endocytosis is important for the maintenance of plasma membrane lipid and protein homeostasis. This is especially critical in human podocytes and the podocyte-like Drosophila nephrocytes that both use a delicate diaphragm system with evolutionarily conserved components for ultrafiltration. Here we show that the sorting nexin 25 homolog Snazarus (Snz) binds to Rab11 and localizes to Rab11-positive recycling endosomes in Drosophila nephrocytes, unlike in fat cells where it is present in plasma membrane/lipid droplet/ER contact sites. Loss of Snz leads to redistribution of Rab11 vesicles from the cell periphery and increases endocytic activity in nephrocytes. These changes are accompanied by defects in diaphragm protein distribution that resemble those seen in Rab11 gain-of-function cells. Of note, co-overexpression of Snz rescues diaphragm defects in Rab11 overexpressing cells, whereas snz knockdown in Rab11 overexpressing nephrocytes or simultaneous knockdown of snz and tbc1d8b encoding a Rab11 GAP lead to massive expansion of the lacunar system that contains mislocalized diaphragm components: Sns and Pyd/ZO-1. We find that loss of Snz enhances while its overexpression impairs secretion, which, together with genetic epistasis analyses, suggest that Snz counteracts Rab11 to maintain the diaphragm via setting the proper balance of exocytosis and endocytosis. LA - English DB - MTMT ER - TY - JOUR AU - Sollazzo, Germano AU - Gouvi, Georgia AU - Nikolouli, Katerina AU - Aumann, Roswitha A. AU - Djambazian, Haig AU - Whitehead, Mark A. AU - Berube, Pierre AU - Chen, Shu-Huang AU - Tsiamis, George AU - Darby, Alistair C. AU - Ragoussis, Jiannis AU - Schetelig, Marc F. AU - Bourtzis, Kostas TI - Genomic and cytogenetic analysis of the Ceratitis capitata temperature-sensitive lethal region JF - G3-GENES GENOMES GENETICS J2 - G3-GENES GENOM GENET PY - 2023 PG - 12 SN - 2160-1836 DO - 10.1093/g3journal/jkad074 UR - https://m2.mtmt.hu/api/publication/33888763 ID - 33888763 N1 - Funding Agency and Grant Number: International Atomic Energy Agency [D44003] Funding text: Acknowledgements This study benefitted from discussions at meetings for the Coordinated Research Project D44003, "Generic approach for the development of genetic sexing strains for SIT applications", funded by the International Atomic Energy Agency. AB - Genetic sexing strains (GSS) are an important tool in support of sterile insect technique (SIT) applications against insect pests and disease vectors. The yet unknown temperature-sensitive lethal (tsl) gene and the recently identified white pupae (wp) gene have been used as selectable markers in the most successful GSS developed so far, the Ceratitis capitata (medfly) VIENNA 8 GSS. The molecular identification of the tsl gene may open the way for its use as a marker for the development of GSS in other insect pests and disease vectors of SIT importance. Prior studies have already shown that the tsl gene is located on the right arm of chromosome 5, between the wp and Zw loci (tsl genomic region). In the present study, we used genomic, transcriptomic, bioinformatic, and cytogenetic approaches to characterize and analyze this genomic region in wild-type and tsl mutant medfly strains. Our results suggested the presence of 561 genes, with 322 of them carrying SNPs and/or insertion-deletion (indel) mutations in the tsl genomic region. Furthermore, comparative transcriptomic analysis indicated the presence of 32 differentially expressed genes, and bioinformatic analysis revealed the presence of 33 orthologs with a described heat-sensitive phenotype of Drosophila melanogaster in this region. These data can be used in functional genetic studies to identify the tsl gene(s) and the causal mutation(s) responsible for the temperature-sensitive lethal phenotype in medfly, and potentially additional genes causing a similar phenotype. LA - English DB - MTMT ER - TY - JOUR AU - Terawaki, S. AU - Vasilev, F. AU - Moriwaki, T. AU - Otomo, T. TI - HOPS, CORVET and newly-identified Hybrid tethering complexes contribute differentially towards multiple modes of endocytosis JF - SCIENTIFIC REPORTS J2 - SCI REP VL - 13 PY - 2023 IS - 1 SN - 2045-2322 DO - 10.1038/s41598-023-45418-3 UR - https://m2.mtmt.hu/api/publication/34327101 ID - 34327101 N1 - Export Date: 14 November 2023 Correspondence Address: Otomo, T.; Department of Molecular and Genetic Medicine, 577 Matsushima, Okayama, Japan; email: otomo@med.kawasaki-m.ac.jp LA - English DB - MTMT ER - TY - JOUR AU - Hargitai, Dávid AU - Kenéz, Lili Anna AU - Al-Lami, Muna Adnan Idan AU - Szenci, Győző AU - Lőrincz, Péter AU - Juhász, Gábor TI - Autophagy controls Wolbachia infection upon bacterial damage and in aging Drosophila JF - FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY J2 - FRONT CELL DEV BIOL VL - 10 PY - 2022 PG - 11 SN - 2296-634X DO - 10.3389/fcell.2022.976882 UR - https://m2.mtmt.hu/api/publication/33162692 ID - 33162692 N1 - Funding Agency and Grant Number: New National Excellence Program of the Ministry for Innovation and Technology; National Research, Development and Innovation Office (Hungary) [UNKP-21-2-II-ELTE- 703, UNKP-215-ELTE-1122]; Hungarian Academy of Sciences [PPD-222/2018, BO- 00514- 21-8]; National Research, Development and Innovation Office [FK 138851, GINOP-2.3.2-15- 2016-00006, GINOP-2.3.2-15- 2016-00032, K119842, KKP129797]; Eotvos Lorand University Excellence Fund [EKA 2022/ 045-P101-2] Funding text: This work was funded by the New National Excellence Program of the Ministry for Innovation and Technology and the National Research, Development and Innovation Office (Hungary) ( UNKP-21-2-II-ELTE- 703 to DH and UNKP-215-ELTE-1122 to PL), the Hungarian Academy of Sciences (PPD-222/2018 and BO- 00514- 21-8 to PL) and the National Research, Development and Innovation Office (FK 138851 to PL, GINOP-2.3.2-15- 2016-00006 and -00032, K119842, KKP129797 and National Biotechnology Laboratory to GJ) and Eotvos Lorand University Excellence Fund ( EKA 2022/ 045-P101-2 to PL). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. AB - Autophagy is a conserved catabolic process in eukaryotic cells that degrades intracellular components in lysosomes, often in an organelle-specific selective manner (mitophagy, ERphagy, etc). Cells also use autophagy as a defense mechanism, eliminating intracellular pathogens via selective degradation known as xenophagy. Wolbachia pipientis is a Gram-negative intracellular bacterium, which is one of the most common parasites on Earth affecting approximately half of terrestrial arthropods. Interestingly, infection grants the host resistance against other pathogens and modulates lifespan, so this bacterium resembles an endosymbiont. Here we demonstrate that Drosophila somatic cells normally degrade a subset of these bacterial cells, and autophagy is required for selective elimination of Wolbachia upon antibiotic damage. In line with these, Wolbachia overpopulates in autophagy-compromised animals during aging while its presence fails to affect host lifespan unlike in case of control flies. The autophagic degradation of Wolbachia thus represents a novel antibacterial mechanism that controls the propagation of this unique bacterium, behaving both as parasite and endosymbiont at the same time. LA - English DB - MTMT ER - TY - JOUR AU - Schneider, K. AU - Farr, T. AU - Pinter, N. AU - Schmitt, K. AU - Valerius, O. AU - Braus, G.H. AU - Kämper, J. TI - The Nma1 protein promotes long distance transport mediated by early endosomes in Ustilago maydis JF - MOLECULAR MICROBIOLOGY J2 - MOL MICROBIOL VL - 117 PY - 2022 IS - 2 SP - 334 EP - 352 PG - 19 SN - 0950-382X DO - 10.1111/mmi.14851 UR - https://m2.mtmt.hu/api/publication/32714825 ID - 32714825 N1 - Export Date: 2 March 2022 CODEN: MOMIE LA - English DB - MTMT ER - TY - JOUR AU - Sivakumar, S. AU - Miellet, S. AU - Clarke, C. AU - Hartley, P.S. TI - Insect nephrocyte function is regulated by a store operated calcium entry mechanism controlling endocytosis and Amnionless turnover JF - JOURNAL OF INSECT PHYSIOLOGY J2 - J INSECT PHYSIOL VL - 143 PY - 2022 SN - 0022-1910 DO - 10.1016/j.jinsphys.2022.104453 UR - https://m2.mtmt.hu/api/publication/33210360 ID - 33210360 N1 - Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset, BH12 5BB, United Kingdom Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia Molecular Horizons, University of WollongongNSW, Australia Export Date: 7 November 2022 CODEN: JIPHA Correspondence Address: Hartley, P.S.; Department of Life and Environmental Sciences, United Kingdom; email: phartley@bournemouth.ac.uk LA - English DB - MTMT ER - TY - JOUR AU - Atienza-Manuel, Alexandra AU - Castillo-Mancho, Vicente AU - De Renzis, Stefano AU - Culi, Joaquim AU - Ruiz-Gómez, Mar TI - Endocytosis mediated by an atypical CUBAM complex modulates slit diaphragm dynamics in nephrocytes JF - DEVELOPMENT J2 - DEVELOPMENT VL - 148 PY - 2021 IS - 22 SN - 0950-1991 DO - 10.1242/dev.199894 UR - https://m2.mtmt.hu/api/publication/32580551 ID - 32580551 N1 - Centro de Biologıá Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, Heidelberg, 69117, Germany Cited By :2 Export Date: 10 March 2023 CODEN: DEVPE Correspondence Address: Culi, J.; Centro de Biologıá Molecular Severo Ochoa, Nicolás Cabrera 1, Cantoblanco, Spain; email: jculi@cbm.csic.es Correspondence Address: Ruiz-Gómez, M.; Centro de Biologıá Molecular Severo Ochoa, Nicolás Cabrera 1, Cantoblanco, Spain; email: mruiz@cbm.csic.es LA - English DB - MTMT ER - TY - THES AU - Boda, Attila TI - A Drosophila Arl8 kis GTPáz szerepe a lizoszomális fúziós folyamatokban PB - Eötvös Loránd Tudományegyetem (ELTE) PY - 2021 SP - 112 DO - 10.15476/ELTE.2020.141 UR - https://m2.mtmt.hu/api/publication/31981014 ID - 31981014 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Heiden, S. AU - Siwek, R. AU - Lotz, M.-L. AU - Borkowsky, S. AU - Schröter, R. AU - Nedvetsky, P. AU - Rohlmann, A. AU - Missler, M. AU - Krahn, M.P. TI - Apical-basal polarity regulators are essential for slit diaphragm assembly and endocytosis in Drosophila nephrocytes JF - CELLULAR AND MOLECULAR LIFE SCIENCES J2 - CELL MOL LIFE SCI VL - 78 PY - 2021 IS - 7 SP - 3657 EP - 3672 PG - 16 SN - 1420-682X DO - 10.1007/s00018-021-03769-y UR - https://m2.mtmt.hu/api/publication/32006263 ID - 32006263 N1 - Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, Münster, 48149, Germany Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, Münster, 48149, Germany Export Date: 10 May 2021 CODEN: CMLSF Correspondence Address: Krahn, M.P.; Medical Cell Biology, Albert-Schweitzer Campus 1-A14, Germany; email: Michael.Krahn@uni-muenster.de Funding details: University of Iowa, UI Funding details: Deutsche Forschungsgemeinschaft, DFG, CRC1348-A03, CRC1348-A05 Funding text 1: Open Access funding enabled and organized by Projekt DEAL. This work was supported by grants of the German research foundation (DFG) to M. P. K. (CRC1348-A05) and M.M. (CRC1348-A03). Funding text 2: We thank D. St. Johnston, A. Nakamura, S. Sotillos, A. Wodarz, the Bloomington Drosophila stock center at the University of Indiana (USA), the Vienna Drosophila Resource Center (Austria) and the Developmental Studies Hybridoma Bank at the University of Iowa (USA) for providing reagents. We also thank Vivian Rieping for technical assistance with electronmicroscopical work. AB - Apical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis. © 2021, The Author(s). LA - English DB - MTMT ER - TY - THES AU - Kiss, Viktória TI - A Drosophila Atg9 autofágia gén szerepe az aktin citoszkeleton szabályozásában [The role for Drosophila Atg9 in regulation of actin cytoskeleton] PB - Szegedi Tudományegyetem (SZTE) PY - 2021 SP - 96 DO - 10.14232/phd.10695 UR - https://m2.mtmt.hu/api/publication/31863904 ID - 31863904 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Lakatos, Zsolt AU - Benkő, Péter AU - Juhász, Gábor AU - Lőrincz, Péter TI - Drosophila Rab39 Attenuates Lysosomal Degradation JF - INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES J2 - INT J MOL SCI VL - 22 PY - 2021 IS - 19 PG - 12 SN - 1661-6596 DO - 10.3390/ijms221910635 UR - https://m2.mtmt.hu/api/publication/32348966 ID - 32348966 N1 - Funding Agency and Grant Number: New National Excellence Program of the Ministry for Innovation and Technology from the National Research, Development and Innovation Fund [UNKP-20-3-II-ELTE-730, UNKP-20-3]; Hungarian Academy of Sciences [PPD-2018-222, LP-2014/2]; National Research Development and Innovation Office [FK 138851, GINOP-2.3.2-15-2016-00006, GINOP-2.3.2-15-2016-00032, K119842, KKP129797] Funding text: This work was supported by the UNKP-20-3 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund (UNKP-20-3-II-ELTE-730 to ZL) and by the Hungarian Academy of Sciences (PPD-2018-222 to PL, LP-2014/2 to GJ) and National Research Development and Innovation Office (FK 138851 to PL, GINOP-2.3.2-15-2016-00006 and -00032, K119842, KKP129797 to GJ). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. LA - English DB - MTMT ER - TY - JOUR AU - Lubojemska, Aleksandra AU - Stefana, M. Irina AU - Sorge, Sebastian AU - Bailey, Andrew P. AU - Lampe, Lena AU - Yoshimura, Azumi AU - Burrell, Alana AU - Collinson, Lucy AU - Gould, Alex P. TI - Adipose triglyceride lipase protects renal cell endocytosis in a Drosophila dietary model of chronic kidney disease JF - PLOS BIOLOGY J2 - PLOS BIOL VL - 19 PY - 2021 IS - 5 SP - e3001230 SN - 1544-9173 DO - 10.1371/journal.pbio.3001230 UR - https://m2.mtmt.hu/api/publication/32580542 ID - 32580542 N1 - Physiology and Metabolism Laboratory, Francis Crick Institute, London, United Kingdom Electron Microscopy Science Technology Platform, Francis Crick Institute, London, United Kingdom Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom Cited By :14 Export Date: 10 March 2023 CODEN: PBLIB Correspondence Address: GouldID, A.P.; Physiology and Metabolism Laboratory, United Kingdom; email: Alex.Gould@crick.ac.uk LA - English DB - MTMT ER - TY - JOUR AU - Simon-Vecsei, Zsófia Judit AU - Sőth, Ármin AU - Lőrincz, Péter AU - Rubics, András AU - Tálas, András AU - Kulcsár, Péter István AU - Juhász, Gábor TI - Identification of new interactions between endolysosomal tethering factors JF - JOURNAL OF MOLECULAR BIOLOGY J2 - J MOL BIOL VL - 443 PY - 2021 IS - 13 PG - 13 SN - 0022-2836 DO - 10.1016/j.jmb.2021.166965 UR - https://m2.mtmt.hu/api/publication/31952974 ID - 31952974 N1 - Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Premium Postdoctoral Research Program, Eötvös Loránd Research Network, Budapest, Hungary Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary Institute of Genetics, Biological Research Centre, Szeged, Hungary Export Date: 11 May 2021 CODEN: JMOBA Correspondence Address: Simon-Vecsei, Z.; Department of Anatomy, Pázmány Péter sétány 1/C, Hungary; email: simon.vecsei.zsofia@ttk.elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Premium Postdoctoral Research Program, Eötvös Loránd Research Network, Budapest, Hungary Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary Institute of Genetics, Biological Research Centre, Szeged, Hungary Export Date: 30 May 2021 CODEN: JMOBA Correspondence Address: Simon-Vecsei, Z.; Department of Anatomy, Pázmány Péter sétány 1/C, Hungary; email: simon.vecsei.zsofia@ttk.elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Premium Postdoctoral Research Program, Eötvös Loránd Research Network, Budapest, Hungary Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary Institute of Genetics, Biological Research Centre, Szeged, Hungary Export Date: 31 August 2021 CODEN: JMOBA Correspondence Address: Simon-Vecsei, Z.; Department of Anatomy, Pázmány Péter sétány 1/C, Hungary; email: simon.vecsei.zsofia@ttk.elte.hu LA - English DB - MTMT ER - TY - JOUR AU - Takáts, Szabolcs AU - Lévay, Luca AU - Boda, Attila AU - Tóth, Sarolta AU - Simon-Vecsei, Zsófia Judit AU - Rubics, András AU - Varga, Ágnes AU - Lippai, Mónika AU - Lőrincz, Péter AU - Glatz, Gábor AU - Juhász, Gábor TI - The Warburg Micro Syndrome-associated Rab3GAP-Rab18 module promotes autolysosome maturation through the Vps34 Complex I JF - FEBS JOURNAL J2 - FEBS J VL - 288 PY - 2021 IS - 1 SP - 190 EP - 211 PG - 22 SN - 1742-464X DO - 10.1111/febs.15313 UR - https://m2.mtmt.hu/api/publication/31279236 ID - 31279236 N1 - Funding Agency and Grant Number: Hungarian Academy of SciencesHungarian Academy of Sciences [LP-2014/2, PPD-003/2016, PPD-222/2018, BO/00652/17]; National Research, Development and Innovation Office of Hungary [GINOP-2.3.2-15-2016-00006, GINOP-2.3.2-15-2016-00032, K119842, KKP129797, KH125108, PD124594]; uNKP New National Excellence Program of the Ministry of Human Capacities of Hungary [uNKP-17-3-I-ELTE-27, uNKP-18-3-I-ELTE-314, uNKP-18-4-ELTE-409] Funding text: We thank Sarolta Palfia for the excellent technical assistance and colleagues and stock centers listed in the section for providing reagents. This work was supported by the Hungarian Academy of Sciences [LP-2014/2 to GJ, PPD-003/2016 to ST, PPD-222/2018 to PL, BO/00652/17 to ZSV.]; the National Research, Development and Innovation Office of Hungary [GINOP-2.3.2-15-2016-00006 and -00032, K119842, and KKP129797 to GJ, KH125108 to ST, PD124594 to ZSV]; and the uNKP New National Excellence Program of the Ministry of Human Capacities of Hungary (uNKP-17-3-I-ELTE-27 and uNKP-18-3-I-ELTE-314 to AB, uNKP-18-4-ELTE-409 to ZSV.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. LA - English DB - MTMT ER - TY - JOUR AU - Csizmadia, Tamás AU - Juhász, Gábor TI - Crinophagy Mechanisms and Its Potential Role in Human Health and Disease JF - PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE J2 - PROG MOL BIOL TRANSL SCI VL - 172 PY - 2020 SP - 239 EP - 255 PG - 17 SN - 1877-1173 DO - 10.1016/bs.pmbts.2020.02.002 UR - https://m2.mtmt.hu/api/publication/31189560 ID - 31189560 AB - Autophagic-lysosomal degradation is essential for the maintenance of normal homeostasis in eukaryotic cells. Several types of such self-degradative and recycling pathways have been identified. From these, probably the least known autophagic process is crinophagy, during which unnecessary or obsolete secretory granules directly fuse with late endosomes/lysosomes as a means of rapid elimination of unused secretory material from the cytoplasm. This process was identified in 1966, but we are only beginning to understand the molecular mechanisms and regulation of crinophagy. In this review, we summarize the current examination methods and possible model systems, discuss the recently identified factors that are required for crinophagy, and give an overview of the potential medical relevance of this process. LA - English DB - MTMT ER - TY - JOUR AU - Dehnen, Lena AU - Janz, Maren AU - Verma, Jitender Kumar AU - Psathaki, Olympia Ekaterini AU - Langemeyer, Lars AU - Frohlich, Florian AU - Heinisch, Jurgen J. AU - Meyer, Heiko AU - Ungermann, Christian AU - Paululat, Achim TI - A trimeric metazoan Rab7 GEF complex is crucial for endocytosis and scavenger function JF - JOURNAL OF CELL SCIENCE J2 - J CELL SCI VL - 133 PY - 2020 IS - 13 PG - 19 SN - 0021-9533 DO - 10.1242/jcs.247080 UR - https://m2.mtmt.hu/api/publication/31689978 ID - 31689978 N1 - Department of Biology and Chemistry, Zoology and Developmental Biology, University of Osnabrück, Barbarastraße 11, Osnabrück, 49076, Germany Department of Biology and Chemistry, Biochemistry, University of Osnabrück, Barbarastraße 11, Osnabrück, 49076, Germany Center of Cellular Nanoanalytics, Integrated Bioimaging Facility Osnabrück (iBiOs), University of Osnabrück, Osnabrück, 49076, Germany Department of Biology and Chemistry, Molecular Membrane Biology, University of Osnabrück, Barbarastraße 11, Osnabrück, 49076, Germany Department of Biology and Chemistry, Genetics, University of Osnabrück, Barbarastraße 11, Osnabrück, 49076, Germany Center of Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, Osnabrück, 49076, Germany Cited By :3 Export Date: 27 June 2022 CODEN: JNCSA Correspondence Address: Ungermann, C.; Department of Biology and Chemistry, Barbarastraße 11, Germany; email: cu@uos.de Correspondence Address: Paululat, A.; Department of Biology and Chemistry, Barbarastraße 11, Germany; email: paululat@uni-osnabrueck.de AB - Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF). Here, we show that full function of the Drosophila Mon1-Ccz1 complex requires a third stoichiometric subunit, termed Bulli (encoded by CG8270). Bulli localises to Rab7-positive endosomes, in agreement with its function in the GEF complex. Using Drosophila nephrocytes as a model system, we observe that absence of Bulli results in (i) reduced endocytosis, (ii) Rab5 accumulation within non-acidified enlarged endosomes, (iii) defective Rab7 localisation and (iv) impaired endosomal maturation. Moreover, longevity of animals lacking bulli is affected. Both the Mon1-Ccz1 dimer and a Bullicontaining trimer display Rab7 GEF activity. In summary, this suggests a key role for Bulli in the Rab5 to Rab7 transition during endosomal maturation rather than a direct influence on the GEF activity of Mon1-Ccz1. LA - English DB - MTMT ER - TY - JOUR AU - Kiss, Viktória AU - Jipa, András AU - Varga, Kata AU - Takáts, Szabolcs AU - Maruzs, Tamás AU - Lőrincz, Péter AU - Simon-Vecsei, Zsófia Judit AU - Szikora, Szilárd AU - Földi, István AU - Bajusz, Csaba AU - Tóth, Dávid AU - Vilmos, Péter AU - Gáspár, Imre AU - Ronchi, Paolo AU - Mihály, József AU - Juhász, Gábor TI - Drosophila Atg9 regulates the actin cytoskeleton via interactions with profilin and Ena JF - CELL DEATH AND DIFFERENTIATION J2 - CELL DEATH DIFFER VL - 27 PY - 2020 IS - 5 SP - 1677 EP - 1692 PG - 16 SN - 1350-9047 DO - 10.1038/s41418-019-0452-0 UR - https://m2.mtmt.hu/api/publication/30969186 ID - 30969186 N1 - Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Doctoral School of Biology, University of Szeged, Szeged, Hungary Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Premium Postdoctoral Program, Hungarian Academy of Sciences, Szeged, Hungary Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany Export Date: 21 January 2020 CODEN: CDDIE Correspondence Address: Juhász, G.; Institute of Genetics, Biological Research Centre, Hungarian Academy of SciencesHungary; email: szmrt@elte.hu Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Doctoral School of Biology, University of Szeged, Szeged, Hungary Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Premium Postdoctoral Program, Hungarian Academy of Sciences, Szeged, Hungary Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany Export Date: 31 January 2020 CODEN: CDDIE Correspondence Address: Juhász, G.; Institute of Genetics, Biological Research Centre, Hungarian Academy of SciencesHungary; email: szmrt@elte.hu Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Doctoral School of Biology, University of Szeged, Szeged, Hungary Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Premium Postdoctoral Program, Hungarian Academy of Sciences, Szeged, Hungary Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany Cited By :4 Export Date: 21 January 2021 CODEN: CDDIE Correspondence Address: Juhász, G.; Institute of Genetics, Hungary; email: szmrt@elte.hu AB - Autophagy ensures the turnover of cytoplasm and requires the coordinated action of Atg proteins, some of which also have moonlighting functions in higher eukaryotes. Here we show that the transmembrane protein Atg9 is required for female fertility, and its loss leads to defects in actin cytoskeleton organization in the ovary and enhances filopodia formation in neurons in Drosophila. Atg9 localizes to the plasma membrane anchor points of actin cables and is also important for the integrity of the cortical actin network. Of note, such phenotypes are not seen in other Atg mutants, suggesting that these are independent of autophagy defects. Mechanistically, we identify the known actin regulators profilin and Ena/VASP as novel binding partners of Atg9 based on microscopy, biochemical, and genetic interactions. Accordingly, the localization of both profilin and Ena depends on Atg9. Taken together, our data identify a new and unexpected role for Atg9 in actin cytoskeleton regulation. LA - English DB - MTMT ER - TY - JOUR AU - Lőrincz, Péter AU - Juhász, Gábor TI - Autophagosome-lysosome fusion JF - JOURNAL OF MOLECULAR BIOLOGY J2 - J MOL BIOL VL - 432 PY - 2020 IS - 8 SP - 2462 EP - 2482 PG - 21 SN - 0022-2836 DO - 10.1016/j.jmb.2019.10.028 UR - https://m2.mtmt.hu/api/publication/30898988 ID - 30898988 N1 - Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117, Hungary Premium Postdoctoral Research Program, Hungarian Academy of Sciences, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6726, Hungary Cited By :19 Export Date: 10 May 2021 CODEN: JMOBA Correspondence Address: Lőrincz, P.; Department of Anatomy, Hungary; email: concrete05@gmail.com LA - English DB - MTMT ER - TY - JOUR AU - Sparvoli, Daniela AU - Zoltner, Martin AU - Cheng, Chao-Yin AU - Field, Mark C. AU - Turkewitz, Aaron P. TI - Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila JF - JOURNAL OF CELL SCIENCE J2 - J CELL SCI VL - 133 PY - 2020 IS - 3 SN - 0021-9533 DO - 10.1242/jcs.238659 UR - https://m2.mtmt.hu/api/publication/31404814 ID - 31404814 N1 - Cited By :10 Export Date: 10 March 2023 CODEN: JNCSA Correspondence Address: Turkewitz, A.P.; Department of Molecular Genetics and Cell Biology, 920 E 58th Street, United States; email: apturkew@uchicago.edu AB - In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways. This article has an associated First Person interview with the first author of the paper. LA - English DB - MTMT ER - TY - JOUR AU - Boda, Attila AU - Lőrincz, Péter AU - Takáts, Szabolcs AU - Csizmadia, Tamás AU - Tóth, Sarolta AU - Kovács, Attila Lajos AU - Juhász, Gábor TI - Drosophila Arl8 is a general positive regulator of lysosomal fusion events JF - BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH J2 - BBA-MOL CELL RES VL - 1866 PY - 2019 IS - 4 SP - 533 EP - 544 PG - 12 SN - 0167-4889 DO - 10.1016/j.bbamcr.2018.12.011 UR - https://m2.mtmt.hu/api/publication/30593586 ID - 30593586 N1 - Funding Agency and Grant Number: Hungarian Academy of Sciences [LP-2014/2, PPD-003/2016, PPD-222/2018]; National Research, Development and Innovation Office of Hungary [GINOP-2.3.2-15-2016-00006, -00032, K119842, KH125108]; UNKP New National Excellence Program of the Ministry of Human Capacities of Hungary [UNKP-17-3-I-ELTE-27, UNKP-18-3-I-ELTE-314] Funding text: This work was funded by the Hungarian Academy of Sciences (LP-2014/2 to GJ; PPD-003/2016 to ST; PPD-222/2018 to PL), the National Research, Development and Innovation Office of Hungary (GINOP-2.3.2-15-2016-00006 and -00032, K119842 to GJ and KH125108 to ST) and the UNKP New National Excellence Program of the Ministry of Human Capacities of Hungary (UNKP-17-3-I-ELTE-27 and UNKP-18-3-I-ELTE-314 to BA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Összes idézések száma a WoS-ban: 0 Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :1 Export Date: 9 September 2019 CODEN: BAMRD Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :2 Export Date: 18 October 2019 CODEN: BAMRD Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :2 Export Date: 21 October 2019 CODEN: BAMRD Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Hungarian Academy of Sciences, Premium Postdoctoral Research Program, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :2 Export Date: 22 October 2019 CODEN: BAMRD Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu AB - The small GTPase Ar18 is known to be involved in the periphery-directed motility of lysosomes. However, the overall importance of moving these vesicles is still poorly understood. Here we show that Drosophila Ar18 is required not only for the proper distribution of lysosomes, but also for autophagosome-lysosome fusion in starved fat cells, endosome-lysosome fusion in garland nephrocytes, and developmentally programmed secretory granule degradation (crinophagy) in salivary gland cells. Moreover, proper Ar18 localization to lysosomes depends on the shared subunits of the BLOC-1 and BORC complexes, which also promote autophagy and crinophagy. In conclusion, we demonstrate that Ar18 is responsible not only for positioning lysosomes but also acts as a general lysosomal fusion factor. LA - English DB - MTMT ER - TY - JOUR AU - Bowman, Shanna L. AU - Bi‐Karchin, Jing AU - Le, Linh AU - Marks, Michael S. TI - The road to lysosome‐related organelles: Insights from Hermansky‐Pudlak syndrome and other rare diseases JF - TRAFFIC J2 - TRAFFIC VL - 20 PY - 2019 IS - 6 SP - 404 EP - 435 PG - 32 SN - 1398-9219 DO - 10.1111/tra.12646 UR - https://m2.mtmt.hu/api/publication/30711474 ID - 30711474 N1 - Cited By :4 Export Date: 18 October 2019 CODEN: TRAFF Correspondence Address: Marks, M.S.; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research InstituteUnited States; email: marksm@pennmedicine.upenn.edu Cited By :4 Export Date: 21 October 2019 CODEN: TRAFF Correspondence Address: Marks, M.S.; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research InstituteUnited States; email: marksm@pennmedicine.upenn.edu Cited By :4 Export Date: 22 October 2019 CODEN: TRAFF Correspondence Address: Marks, M.S.; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research InstituteUnited States; email: marksm@pennmedicine.upenn.edu Cited By :42 Export Date: 4 May 2021 CODEN: TRAFF Correspondence Address: Marks, M.S.; Department of Pathology and Laboratory Medicine, United States; email: marksm@pennmedicine.upenn.edu Cited By :49 Export Date: 23 September 2021 CODEN: TRAFF Correspondence Address: Marks, M.S.; Department of Pathology and Laboratory Medicine, United States; email: marksm@pennmedicine.upenn.edu LA - English DB - MTMT ER - TY - JOUR AU - Gillingham, Alison K AU - Munro, Sean TI - Transport carrier tethering – how vesicles are captured by organelles JF - CURRENT OPINION IN CELL BIOLOGY J2 - CURR OPIN CELL BIOL VL - 59 PY - 2019 SP - 140 EP - 146 PG - 7 SN - 0955-0674 DO - 10.1016/j.ceb.2019.04.010 UR - https://m2.mtmt.hu/api/publication/30711477 ID - 30711477 N1 - Cited By :1 Export Date: 18 October 2019 CODEN: COCBE LA - English DB - MTMT ER - TY - JOUR AU - Lakatos, Zsolt AU - Lőrincz, Péter AU - Szabó, Zoltán AU - Benkő, Péter AU - Kenéz, Lili Anna AU - Csizmadia, Tamás AU - Juhász, Gábor TI - Sec20 is Required for Autophagic and Endocytic Degradation Independent of Golgi-ER Retrograde Transport JF - CELLS J2 - CELLS-BASEL VL - 8 PY - 2019 IS - 8 PG - 16 SN - 2073-4409 DO - 10.3390/cells8080768 UR - https://m2.mtmt.hu/api/publication/30754438 ID - 30754438 N1 - Funding Agency and Grant Number: Hungarian Academy of SciencesHungarian Academy of Sciences [LP-2014/2, PPD-222/2018]; National Research, Development and Innovation Office of Hungary [GINOP-2.3.2-15-2016-00006, K119842]; Ministry of Human Capacities [UNKP-18-3-I-ELTE-302]; Hungarian Academy of SciencesHungarian Academy of Sciences Funding text: This research was funded by the Hungarian Academy of Sciences grant numbers LP-2014/2 to G. Juhasz and PPD-222/2018 to P. Lorincz, the National Research, Development and Innovation Office of Hungary grant numbers GINOP-2.3.2-15-2016-00006 and K119842 to G. Juhasz), the Ministry of Human Capacities grant number UNKP-18-3-I-ELTE-302 to Z. Lakatos), and the APC was funded by the Hungarian Academy of Sciences. AB - Endocytosis and autophagy are evolutionarily conserved degradative processes in all eukaryotes. Both pathways converge to the lysosome where cargo is degraded. Improper lysosomal degradation is observed in many human pathologies, so its regulatory mechanisms are important to understand. Sec20/BNIP1 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 1) is a BH3 (Bcl-2 homology 3) domain-containing SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) protein that has been suggested to promote Golgi-ER retrograde transport, mitochondrial fission, apoptosis and mitophagy in yeast and vertebrates. Here, we show that loss of Sec20 in Drosophila fat cells causes the accumulation of autophagic vesicles and prevents proper lysosomal acidification and degradation during bulk, starvation-induced autophagy. Furthermore, Sec20 knockdown leads to the enlargement of late endosomes and accumulation of defective endolysosomes in larval Drosophila nephrocytes. Importantly, the loss of Syx18 (Syntaxin 18), one of the known partners of Sec20, led to similar changes in nephrocytes and fat cells. Interestingly. Sec20 appears to function independent of its role in Golgi-ER retrograde transport in regulating lysosomal degradation, as the loss of its other partner SNAREs Use1 (Unconventional SNARE In The ER 1) and Sec22 or tethering factor Zw10 (Zeste white 10), which function together in the Golgi-ER pathway, does not cause defects in autophagy or endocytosis. Thus, our data identify a potential new transport route specific to lysosome biogenesis and function. LA - English DB - MTMT ER - TY - JOUR AU - Lőrincz, Péter AU - Kenéz, Lili Anna AU - Tóth, Sarolta AU - Kiss, Viktória AU - Varga, Ágnes AU - Csizmadia, Tamás AU - Simon-Vecsei, Zsófia Judit AU - Juhász, Gábor TI - Vps8 overexpression inhibits HOPS-dependent trafficking routes by outcompeting Vps41/Lt JF - ELIFE J2 - ELIFE VL - 8 PY - 2019 PG - 25 SN - 2050-084X DO - 10.7554/eLife.45631 UR - https://m2.mtmt.hu/api/publication/30715075 ID - 30715075 N1 - Funding Agency and Grant Number: Magyar Tudomanyos Akademia [LP -2014/2, PPD-222/2018, BO/00652/17]; National Research Development and Innovation OfficeNational Research, Development & Innovation Office (NRDIO) - Hungary [GINOP-2.3.2-15-2016-00006, GINOP-2.3.2-15-2016-00032, K119842, PD124594]; Ministry of Human Capacities [UNKP-18-2-IIELTE-32, UNKP-18-4-ELTE-409] Funding text: Magyar Tudomanyos Akade-mia LP -2014/2 Gabor Juhasz; Magyar Tudomanyos Akade-mia PPD-222/2018 Peter Lorincz; Magyar Tudomanyos Akade-mia BO/00652/17 ZsOfia Simon-Vecsei; National Research Development and Innovation Office GINOP-2.3.2-15-2016-00006 Gabor Juhasz; National Research Development and Innovation Office GINOP-2.3.2-15-2016-00032 Gabor Juhasz; National Research Development and Innovation Office K119842 Gabor Juhasz; National Research Development and Innovation Office PD124594 Zsofia Simon-Vecsei; Ministry of Human Capacities UNKP-18-2-IIELTE-32 Lili Anna Kenez; Ministry of Human Capacities UNKP-18-4-ELTE-409 Zsofia Simon-Vecsei; The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication. LA - English DB - MTMT ER - TY - JOUR AU - Segala, Gregory AU - Bennesch, Marcela A. AU - Ghahhari, Nastaran Mohammadi AU - Pandey, Deo Prakash AU - Echeverria, Pablo C. AU - Karch, Francois AU - Maeda, Robert K. AU - Picard, Didier TI - Vps11 and Vps18 of Vps-C membrane traffic complexes are E3 ubiquitin ligases and fine-tune signalling JF - NATURE COMMUNICATIONS J2 - NAT COMMUN VL - 10 PY - 2019 SN - 2041-1723 DO - 10.1038/s41467-019-09800-y UR - https://m2.mtmt.hu/api/publication/30684419 ID - 30684419 N1 - Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Export Date: 25 July 2019 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Export Date: 11 October 2019 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Export Date: 18 October 2019 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :2 Export Date: 17 November 2020 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :3 Export Date: 28 November 2020 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :3 Export Date: 9 February 2021 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :4 Export Date: 8 March 2021 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :5 Export Date: 7 May 2021 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :5 Export Date: 2 July 2021 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :6 Export Date: 12 August 2021 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch Département de Biologie Cellulaire, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Département de Génétique et Évolution, Université de Genève, Sciences III, 30 quai Ernest-Ansermet, Genève, 1211, Switzerland Department of Molecular Microbiology, Oslo University Hospital, Oslo, 0372, Norway Cited By :6 Export Date: 15 September 2021 Correspondence Address: Picard, D.; Département de Biologie Cellulaire, 30 quai Ernest-Ansermet, Switzerland; email: didier.picard@unige.ch AB - In response to extracellular signals, many signalling proteins associated with the plasma membrane are sorted into endosomes. This involves endosomal fusion, which depends on the complexes HOPS and CORVET. Whether and how their subunits themselves modulate signal transduction is unknown. We show that Vps11 and Vps18 (Vps11/18), two common subunits of the HOPS/CORVET complexes, are E3 ubiquitin ligases. Upon overexpression of Vps11/Vps18, we find perturbations of ubiquitination in signal transduction pathways. We specifically demonstrate that Vps11/18 regulate several signalling factors and pathways, including Wnt, estrogen receptor alpha (ER alpha), and NF kappa B. For ER alpha, we demonstrate that the Vps11/ 18mediated ubiquitination of the scaffold protein PELP1 impairs the activation of ER alpha by c-Src. Thus, proteins involved in membrane traffic, in addition to performing their well-described role in endosomal fusion, fine- tune signalling in several different ways, including through ubiquitination. LA - English DB - MTMT ER - TY - JOUR AU - van der Beek, Jan AU - Jonker, Caspar AU - van der Welle, Reini AU - Liv, Nalan AU - Klumperman, Judith TI - CORVET, CHEVI and HOPS – multisubunit tethers of the endo-lysosomal system in health and disease JF - JOURNAL OF CELL SCIENCE J2 - J CELL SCI VL - 132 PY - 2019 IS - 10 SN - 0021-9533 DO - 10.1242/jcs.189134 UR - https://m2.mtmt.hu/api/publication/30711475 ID - 30711475 N1 - Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht, 3584 CX, Netherlands Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, United States Export Date: 18 October 2019 CODEN: JNCSA Correspondence Address: Klumperman, J.; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht UniversityNetherlands; email: j.klumperman@umcutrecht.nl Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht, 3584 CX, Netherlands Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, United States Export Date: 21 October 2019 CODEN: JNCSA Correspondence Address: Klumperman, J.; Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht UniversityNetherlands; email: j.klumperman@umcutrecht.nl Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Institute for Biomembranes, Utrecht University, Utrecht, 3584 CX, Netherlands Department of Ophthalmology, Margaret Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, United States Cited By :20 Export Date: 23 September 2021 CODEN: JNCSA Correspondence Address: Klumperman, J.; Section Cell Biology, Netherlands; email: j.klumperman@umcutrecht.nl LA - English DB - MTMT ER - TY - JOUR AU - Csizmadia, Tamás AU - Lőrincz, Péter AU - Hegedűs, Krisztina AU - Szeplaki, S AU - Lőw, Péter AU - Juhász, Gábor TI - Molecular mechanisms of developmentally programmed crinophagy in Drosophila. JF - JOURNAL OF CELL BIOLOGY J2 - J CELL BIOL VL - 217 PY - 2018 IS - 1 SP - 361 EP - 374 PG - 14 SN - 0021-9525 DO - 10.1083/jcb.201702145 UR - https://m2.mtmt.hu/api/publication/3287984 ID - 3287984 N1 - Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :8 Export Date: 9 September 2019 CODEN: JCLBA Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :11 Export Date: 18 October 2019 CODEN: JCLBA Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary Cited By :11 Export Date: 22 October 2019 CODEN: JCLBA Correspondence Address: Juhász, G.; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd UniversityHungary; email: szmrt@elte.hu AB - At the onset of metamorphosis, Drosophila salivary gland cells undergo a burst of glue granule secretion to attach the forming pupa to a solid surface. Here, we show that excess granules evading exocytosis are degraded via direct fusion with lysosomes, a secretory granule-specific autophagic process known as crinophagy. We find that the tethering complex HOPS (homotypic fusion and protein sorting); the small GTPases Rab2, Rab7, and its effector, PLEKHM1; and a SNAP receptor complex consisting of Syntaxin 13, Snap29, and Vamp7 are all required for the fusion of secretory granules with lysosomes. Proper glue degradation within lysosomes also requires the Uvrag-containing Vps34 lipid kinase complex and the v-ATPase proton pump, whereas Atg genes involved in macroautophagy are dispensable for crinophagy. Our work establishes the molecular mechanism of developmentally programmed crinophagy in Drosophila and paves the way for analyzing this process in metazoans. LA - English DB - MTMT ER - TY - JOUR AU - Gayathri, Samarasekera GDN AU - Jane, Auld V TI - C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src JF - MOLECULAR BIOLOGY OF THE CELL J2 - MOL BIOL CELL VL - 29 PY - 2018 IS - 2 SP - 123 EP - 136 PG - 14 SN - 1059-1524 DO - 10.1091/mbc.E17-04-0251) UR - https://m2.mtmt.hu/api/publication/27388375 ID - 27388375 N1 - Cited By :3 Export Date: 18 October 2019 CODEN: MBCEE Correspondence Address: Jane Auld, V.; Department of Zoology, University of British ColumbiaCanada; email: auld@zoology.ubc.ca LA - English DB - MTMT ER - TY - JOUR AU - Hochapfel, Florian AU - Denk, Lucia AU - Maassen, Christine AU - Zaytseva, Yulia AU - Rachel, Reinhard AU - Witzgall, Ralph AU - Krahn, Michael P. TI - Electron microscopy of Drosophila garland cell nephrocytes: Optimal preparation, immunostaining and STEM tomography JF - JOURNAL OF CELLULAR BIOCHEMISTRY J2 - J CELL BIOCHEM VL - 119 PY - 2018 IS - 10 SP - 8011 EP - 8021 PG - 11 SN - 0730-2312 DO - 10.1002/jcb.26702 UR - https://m2.mtmt.hu/api/publication/30452447 ID - 30452447 N1 - Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Münster, Germany Cited By :3 Export Date: 18 October 2019 CODEN: JCEBD Correspondence Address: Krahn, M.P.; Molecular and Cellular Anatomy, University of RegensburgGermany; email: michael.krahn@ukmuenster.de AB - Due to its structural and molecular similarities to mammalian podocytes, the Drosophila nephrocyte emerged as a model system to study podocyte development and associated diseases. Similar to podocytes, nephrocytes establish a slit diaphragm between foot process-like structures in order to filter the hemolymph. One major obstacle in nephrocyte research is the distinct visualization of this subcellular structure to assess its integrity. Therefore, we developed a specialized dissection and fixation protocol, including high pressure freezing and freeze substitution techniques, to improve the preservation of the intricate ultrastructural details necessary for electron microscopic assessment. By means of scanning transmission electron microscopy (STEM) tomography, a three-dimensional dataset was generated to further understand the complex architecture of the nephrocyte channel system. Moreover, a staining protocol for immunolabeling of ultrathin sections of Epon-embedded nephrocytes is discussed, which allows the reliable detection of GFP-tagged fusion proteins combined with superior sample preservation. Due to the growing number of available GFP-trap fly lines, this approach is widely applicable for high resolution localization studies in wild type and mutant nephrocytes. LA - English DB - MTMT ER - TY - JOUR AU - Langemeyer, Lars AU - Froehlich, Florian AU - Ungermann, Christian TI - Rab GTPase Function in Endosome and Lysosome Biogenesis JF - TRENDS IN CELL BIOLOGY J2 - TRENDS CELL BIOL VL - 28 PY - 2018 IS - 11 SP - 957 EP - 970 PG - 14 SN - 0962-8924 DO - 10.1016/j.tcb.2018.06.007 UR - https://m2.mtmt.hu/api/publication/30424700 ID - 30424700 N1 - Cited By :9 Export Date: 9 September 2019 CODEN: TCBIE Correspondence Address: Ungermann, C.; Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, Germany; email: cu@uos.de Cited By :9 Export Date: 18 October 2019 CODEN: TCBIE Correspondence Address: Ungermann, C.; Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, Germany; email: cu@uos.de Cited By :98 Export Date: 23 September 2021 CODEN: TCBIE Correspondence Address: Ungermann, C.; Department of Biology/Chemistry, Barbarastrasse 13, Germany; email: cu@uos.de AB - Eukaryotic cells maintain a highly organized endolysosomal system. This system regulates the protein and lipid content of the plasma membrane, it participates in the intracellular quality control machinery and is needed for the efficient removal of damaged organelles. This complex network comprises an endosomal membrane system that feeds into the lysosomes, yet also allows recycling of membrane proteins, and probably lipids. Moreover, lysosomal degradation provides the cell with macromolecules for further growth. In this review, we focus primarily on the role of the small Rab GTPases Rab5 and Rab7 as organelle markers and interactors of multiple effectors on endosomes and lysosomes and highlight their role in membrane dynamics, particularly fusion along the endolysosomal pathway. LA - English DB - MTMT ER - TY - JOUR AU - Luerick, Anna AU - Kuemmel, Daniel AU - Ungermann, Christian TI - Multisubunit tethers in membrane fusion JF - CURRENT BIOLOGY J2 - CURR BIOL VL - 28 PY - 2018 IS - 8 SP - R417 EP - R420 PG - 4 SN - 0960-9822 DO - 10.1016/j.cub.2017.12.012 UR - https://m2.mtmt.hu/api/publication/30913539 ID - 30913539 N1 - Cited By :18 Export Date: 10 March 2023 CODEN: CUBLE Correspondence Address: Ungermann, C.; University of Osnabrück, Barbarastrasse 13, Germany; email: cu@uos.de LA - English DB - MTMT ER - TY - JOUR AU - Lund, Viktor Karlovich AU - Madsen, Kenneth Lindegaard AU - Kjaerulff, Ole TI - Drosophila Rab2 controls endosome-lysosome fusion and LAMP delivery to late endosomes JF - AUTOPHAGY J2 - AUTOPHAGY VL - 14 PY - 2018 IS - 9 SP - 1520 EP - 1542 PG - 23 SN - 1554-8627 DO - 10.1080/15548627.2018.1458170 UR - https://m2.mtmt.hu/api/publication/30424703 ID - 30424703 N1 - Cited By :4 Export Date: 9 September 2019 Correspondence Address: Kjaerulff, O.; Department of Neuroscience, The Faculty of Health Sciences, University of CopenhagenDenmark; email: okjaerulff@sund.ku.dk Cited By :5 Export Date: 18 October 2019 Correspondence Address: Kjaerulff, O.; Department of Neuroscience, The Faculty of Health Sciences, University of CopenhagenDenmark; email: okjaerulff@sund.ku.dk Cited By :17 Export Date: 23 September 2021 Correspondence Address: Kjaerulff, O.; Department of Neuroscience, Denmark; email: okjaerulff@sund.ku.dk AB - Rab2 is a conserved Rab GTPase with a well-established role in secretory pathway function and phagocytosis. Here we demonstrate that Drosophila Rab2 is recruited to late endosomal membranes, where it controls the fusion of LAMP-containing biosynthetic carriers and lysosomes to late endosomes. In contrast, the lysosomal GTPase Gie/Arl8 is only required for late endosome-lysosome fusion, but not for the delivery of LAMP to the endocytic pathway. We also find that Rab2 is required for the fusion of autophagosomes to the endolysosomal pathway, but not for the biogenesis of lysosome-related organelles. Surprisingly, Rab2 does not rely on HOPS-mediated vesicular fusion for recruitment to late endosomal membranes. Our work suggests that Drosophila Rab2 is a central regulator of the endolysosomal and macroautophagic/autophagic pathways by controlling the major heterotypic fusion processes at the late endosome. LA - English DB - MTMT ER - TY - JOUR AU - Marelja, Zvonimir AU - Leimkuhler, Silke AU - Missirlis, Fanis TI - Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism JF - FRONTIERS IN PHYSIOLOGY J2 - FRONT PHYSIOL VL - 9 PY - 2018 PG - 31 SN - 1664-042X DO - 10.3389/fphys.2018.00050 UR - https://m2.mtmt.hu/api/publication/27331082 ID - 27331082 N1 - Cited By :8 Export Date: 18 October 2019 Correspondence Address: Missirlis, F.; Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico; email: fanis@fisio.cinvestav.mx LA - English DB - MTMT ER - TY - JOUR AU - Morlon-Guyot, Juliette AU - El Hajj, Hiba AU - Martin, Kevin AU - Fois, Adrien AU - Carrillo, Amandine AU - Berry, Laurence AU - Burchmore, Richard AU - Meissner, Markus AU - Lebrun, Maryse AU - Daher, Wassim TI - A proteomic analysis unravels novel CORVET and HOPS proteins involved in Toxoplasma gondii secretory organelles biogenesis JF - CELLULAR MICROBIOLOGY J2 - CELL MICROBIOL VL - 20 PY - 2018 IS - 11 PG - 19 SN - 1462-5814 DO - 10.1111/cmi.12870 UR - https://m2.mtmt.hu/api/publication/30518116 ID - 30518116 N1 - Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de Montpellier, Montpellier, France Departments of Internal Medicine and Experimental Pathology, Immunology and Microbiology, American University of Beirut, Beirut, Lebanon Polyomics Facility, University of Glasgow, Glasgow, United Kingdom Wellcome Centre for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany Cited By :3 Export Date: 18 October 2019 CODEN: CEMIF Correspondence Address: Daher, W.; Dynamique des Interactions Membranaires Normales et Pathologiques, UMR5235 CNRS, INSERM, Université de MontpellierFrance; email: wassim.daher@univ-montp2.fr AB - Apicomplexans use the endolysosomal system for the biogenesis of their secretory organelles, namely, micronemes, rhoptries, and dense granules. In Toxoplasma gondii, our previous in silico search identified the HOPS tethering but not the CORVET complex and demonstrated a role of Vps11 (a common component for both complexes) in its secretory organelle biogenesis. Herein, we performed Vps11-GFP-Trap pull-down assays and identified by proteomic analysis, not only the CORVET-specific subunit Vps8 but also a BEACH domain-containing protein (BDCP) conserved in eukaryotes. We show that knocking-down Vps8 affects targeting of dense granule proteins, transport of rhoptry proteins, and the localization of the cathepsin L protease vacuolar compartment marker. Only a subset of micronemal proteins are affected by the absence of Vps8, shedding light on at least two trafficking pathways involved in microneme maturation. Knocking-down BDCP revealed a restricted and particular role of this protein in rhoptry and vacuolar compartment biogenesis. Moreover, depletion of BDCP or Vps8 abolishes parasite virulence in vivo. This study identified BDCP as a novel CORVET/HOPS-associated protein, playing specific roles and acting in concert during secretory organelle biogenesis, an essential process for host cell infection. Our results open the hypothesis for a role of BDCP in the vesicular trafficking towards lysosome-related organelles in mammals and yeast. LA - English DB - MTMT ER - TY - JOUR AU - Psathaki, O-E AU - Dehnen, L AU - Hartley, PS AU - Paululat, A TI - Drosophila pericardial nephrocyte ultrastructure changes during ageing JF - MECHANISMS OF AGEING AND DEVELOPMENT J2 - MECH AGEING DEV VL - 173 PY - 2018 SP - 9 EP - 20 PG - 12 SN - 0047-6374 DO - 10.1016/j.mad.2018.04.006 UR - https://m2.mtmt.hu/api/publication/27388374 ID - 27388374 N1 - Center of Cellular Nanoanalystics, Integrated Bioimaging Facility Osnabrück (iBiOs), University of Osnabrück, Osnabrück, 49076, Germany Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastr. 11, Osnabrück, 49076, Germany University of Bournemouth, Department of Life and Environmental Science, Poole, Dorset BH12 5BB, United Kingdom Cited By :3 Export Date: 18 October 2019 CODEN: MAGDA Correspondence Address: Paululat, A.; Department of Zoology and Developmental Biology, University of Osnabrück, Barbarastr. 11, Germany; email: paululat@biologie.uni-osnabrueck.de LA - English DB - MTMT ER - TY - JOUR AU - Sparvoli, Daniela AU - Richardson, Elisabeth AU - Osakada, Hiroko AU - Lan, Xun AU - Iwamoto, Masaaki AU - Bowman, Grant R AU - Kontur, Cassandra AU - Bourland, William A AU - Lynn, Denis H AU - Pritchard, Jonathan K AU - Haraguchi, Tokuko AU - Dacks, Joel B AU - Turkewitz, Aaron P TI - Remodeling the Specificity of an Endosomal CORVET Tether Underlies Formation of Regulated Secretory Vesicles in the Ciliate Tetrahymena thermophila JF - CURRENT BIOLOGY J2 - CURR BIOL VL - 28 PY - 2018 IS - 5 SP - 697 EP - + PG - 27 SN - 0960-9822 DO - 10.1016/j.cub.2018.01.047 UR - https://m2.mtmt.hu/api/publication/27272063 ID - 27272063 N1 - Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, 651-2492, Japan Department of Genetics, Stanford University, Stanford, CA 94305, United States Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States Department of Biological Sciences, Boise State University, Boise, ID 83725-1515, United States Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada Department of Biology, Stanford University, Stanford, CA 94305, United States Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan Department of Molecular Biology, University of Wyoming, Laramie, WY, United States Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, United States Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Cited By :3 Export Date: 18 October 2019 CODEN: CUBLE Correspondence Address: Turkewitz, A.P.; Department of Molecular Genetics and Cell Biology, The University of ChicagoUnited States; email: apturkew@uchicago.edu LA - English DB - MTMT ER - TY - JOUR AU - Takáts, Szabolcs AU - Glatz, Gábor AU - Szenci, Győző AU - Boda, Attila AU - Horváth V., Gábor AU - Hegedűs, Krisztina AU - Kovács, Attila Lajos AU - Juhász, Gábor TI - Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. JF - PLOS GENETICS J2 - PLOS GENET VL - 14 PY - 2018 IS - 4 PG - 23 SN - 1553-7390 DO - 10.1371/journal.pgen.1007359 UR - https://m2.mtmt.hu/api/publication/3364574 ID - 3364574 N1 - Funding Agency and Grant Number: Hungarian Academy of SciencesHungarian Academy of Sciences [LP-2014/2, PPD-003/2016]; National Research, Development and Innovation Office of Hungary [GINOP-2.32-15-2010-00006, GINOP-2.32-15-2010-00032, K119842, ERC-HU123410, KH125108] Funding text: This work was funded by the Hungarian Academy of Sciences (LP-2014/2 to GJ; PPD-003/2016 to ST) and National Research, Development and Innovation Office of Hungary (GINOP-2.32-15-2010-00006 and -00032, K119842 and ERC-HU123410 to GJ and KH125108 for ST). The funders had no role in study design, data collection and, analysis, decision to publish, or preparation of the manuscript. Funder websites are: http://mta.hu/http://nkfih.gov.hu/ AB - The autophagosomal SNARE Syntaxin17 (Syx17) forms a complex with Snap29 and Vamp7/8 to promote autophagosome-lysosome fusion via multiple interactions with the tethering complex HOPS. Here we demonstrate that, unexpectedly, one more SNARE (Ykt6) is also required for autophagosome clearance in Drosophila. We find that loss of Ykt6 leads to large-scale accumulation of autophagosomes that are unable to fuse with lysosomes to form autolysosomes. Of note, loss of Syx5, the partner of Ykt6 in ER-Golgi trafficking does not prevent autolysosome formation, pointing to a more direct role of Ykt6 in fusion. Indeed, Ykt6 localizes to lysosomes and autolysosomes, and forms a SNARE complex with Syx17 and Snap29. Interestingly, Ykt6 can be outcompeted from this SNARE complex by Vamp7, and we demonstrate that overexpression of Vamp7 rescues the fusion defect of ykt6 loss of function cells. Finally, a point mutant form with an RQ amino acid change in the zero ionic layer of Ykt6 protein that is thought to be important for fusion-competent SNARE complex assembly retains normal autophagic activity and restores full viability in mutant animals, unlike palmitoylation or farnesylation site mutant Ykt6 forms. As Ykt6 and Vamp7 are both required for autophagosome-lysosome fusion and are mutually exclusive subunits in a Syx17-Snap29 complex, these data suggest that Vamp7 is directly involved in membrane fusion and Ykt6 acts as a non-conventional, regulatory SNARE in this process. LA - English DB - MTMT ER - TY - JOUR AU - Helmstädter, M AU - Simons, M TI - Using Drosophila nephrocytes in genetic kidney disease JF - CELL AND TISSUE RESEARCH J2 - CELL TISSUE RES VL - 369 PY - 2017 IS - 1 SP - 119 EP - 126 PG - 8 SN - 0302-766X DO - 10.1007/s00441-017-2606-z UR - https://m2.mtmt.hu/api/publication/26669578 ID - 26669578 N1 - Renal Division, University Hospital Freiburg, Hugstetter Strasse 55, Freiburg, 79106, Germany Imagine Institute, Paris Descartes University–Sorbonne Paris Cité, Paris, 75015, France Institut Imagine, 24 Boulevard du Montparnasse, Paris, France Cited By :9 Export Date: 18 October 2019 CODEN: CTSRC Correspondence Address: Simons, M.; Institut Imagine, 24 Boulevard du Montparnasse, France; email: matias.simons@institutimagine.org LA - English DB - MTMT ER - TY - JOUR AU - Helmstaedter, Martin AU - Huber, Tobias B AU - Hermle, Tobias TI - Using the Drosophila Nephrocyte to Model Podocyte Function and Disease JF - FRONTIERS IN PEDIATRICS J2 - FRONT PEDIATR VL - 5 PY - 2017 PG - 9 SN - 2296-2360 DO - 10.3389/fped.2017.00262 UR - https://m2.mtmt.hu/api/publication/27053517 ID - 27053517 N1 - Cited By :6 Export Date: 18 October 2019 Correspondence Address: Hermle, T.; Renal Division, University Medical Center FreiburgGermany; email: tobias.hermle@uniklinik-freiburg.de Cited By :13 Export Date: 15 April 2021 Correspondence Address: Hermle, T.; Renal Division, Germany; email: tobias.hermle@uniklinik-freiburg.de Cited By :15 Export Date: 3 August 2021 Correspondence Address: Hermle, T.; Renal Division, Germany; email: tobias.hermle@uniklinik-freiburg.de LA - English DB - MTMT ER - TY - JOUR AU - Lőrincz, Péter AU - Mauvezin, C AU - Juhász, Gábor TI - Exploring Autophagy in Drosophila JF - CELLS J2 - CELLS-BASEL VL - 6 PY - 2017 IS - 3 PG - 14 SN - 2073-4409 DO - 10.3390/cells6030022 UR - https://m2.mtmt.hu/api/publication/3275070 ID - 3275070 N1 - Funding Agency and Grant Number: Hungarian Academy of SciencesHungarian Academy of Sciences [LP-2014/2]; National Research, Development and Innovation OfficeNational Research, Development & Innovation Office (NRDIO) - Hungary [K 119842, ERC_HU_15 123410, GINOP-2.3.2-15-2016-00032]; Juan de la Cierva-incorporation grant (Ministerio de Ciencia) [IJCI-2015-24716]; New National Excellence Program of the Ministry of Human Capacities [UNKP-16-3-III] Funding text: Research in the Juhasz lab is funded by the Hungarian Academy of Sciences (Momentum grant LP-2014/2) and the National Research, Development and Innovation Office (K 119842, ERC_HU_15 123410, GINOP-2.3.2-15-2016-00032 grants). CM is supported by Juan de la Cierva-incorporation grant (Ministerio de Ciencia IJCI-2015-24716), and PL is supported by the New National Excellence Program of the Ministry of Human Capacities (UNKP-16-3-III). AB - Autophagy is a catabolic process in eukaryotic cells promoting bulk or selective degradation of cellular components within lysosomes. In recent decades, several model systems were utilized to dissect the molecular machinery of autophagy and to identify the impact of this cellular "self-eating" process on various physiological and pathological processes. Here we briefly discuss the advantages and limitations of using the fruit fly Drosophila melanogaster, a popular model in cell and developmental biology, to apprehend the main pathway of autophagy in a complete animal. LA - English DB - MTMT ER - TY - JOUR AU - Lőrincz, Péter AU - Tóth, Sarolta AU - Benkő, Péter AU - Lakatos, Zsolt AU - Boda, Attila AU - Glatz, Gábor AU - Zobel, M AU - Bisi, S AU - Hegedűs, Krisztina AU - Takáts, Szabolcs AU - Scita, G AU - Juhász, Gábor TI - Rab2 promotes autophagic and endocytic lysosomal degradation JF - JOURNAL OF CELL BIOLOGY J2 - J CELL BIOL VL - 216 PY - 2017 IS - 7 SP - 1937 EP - 1947 PG - 11 SN - 0021-9525 DO - 10.1083/jcb.201611027 UR - https://m2.mtmt.hu/api/publication/3230864 ID - 3230864 N1 - P. Lőrincz and S. Tóth contributed equally to this paper. N1 Funding details: 087518/Z/08/Z, Wellcome Trust N1 Funding details: 268836, ERC, European Research Council N1 Funding text: We also thank our funders: Wellcome Trust (087518/Z/08/Z to G. Juhász), Hungarian Academy of Sciences (LP-2014/2 to G. Juhász), National Research, Development and Innovation Office of Hungary (GIN OP-2.3.2-15-2016-00006 and K119842 to G. Juhász and PD112632 to K. Hegedus), Italian Association for Cancer Research Investigator Grant (10168 and 18621 to G. Scita) and European Research Council (268836 to G. Scita), New National Excellence Program (UNKP-16-3-III to P. Lorincz and UNKP-16-2-I to Z. Lakatos), and Italian Association for Cancer Research (S. Bisi). AB - Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes. LA - English DB - MTMT ER -