TY - JOUR AU - Faitsch, M. AU - Eich, T. AU - Harrer, G.F. AU - Wolfrum, E. AU - Brida, D. AU - David, P. AU - Dunne, M. AU - Gil, L. AU - Labit, B. AU - Stroth, U. ED - EUROfusion MST1, Team / Collaborative Organization ED - ASDEX, Upgrade Team / Collaborative Organization TI - Analysis and expansion of the quasi-continuous exhaust (QCE) regime in ASDEX Upgrade JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 63 PY - 2023 IS - 7 SN - 0029-5515 DO - 10.1088/1741-4326/acd464 UR - https://m2.mtmt.hu/api/publication/34034653 ID - 34034653 N1 - Export Date: 26 June 2023 CODEN: NUFUA LA - English DB - MTMT ER - TY - JOUR AU - Ivanova-Stanik, I AU - Chmielewski, P AU - Zagorski, R TI - Integrated core-SOL simulations for SPARC tokamak with the COREDIV code JF - FUSION ENGINEERING AND DESIGN J2 - FUSION ENG DES VL - 193 PY - 2023 PG - 5 SN - 0920-3796 DO - 10.1016/j.fusengdes.2023.113698 UR - https://m2.mtmt.hu/api/publication/33856152 ID - 33856152 LA - English DB - MTMT ER - TY - JOUR AU - Zito, A. AU - Wischmeier, M. AU - Kappatou, A. AU - Kallenbach, A. AU - Sciortino, F. AU - Rohde, V. AU - Schmid, K. AU - Hinson, E. AU - Schmitz, O. AU - Cavedon, M. AU - McDermott, R. AU - Dux, R. AU - Griener, M. AU - Stroth, U. AU - the, ASDEX Upgrade Team TI - Investigation of helium exhaust dynamics at the ASDEX Upgrade tokamak with full-tungsten wall JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 63 PY - 2023 IS - 9 PG - 25 SN - 0029-5515 DO - 10.1088/1741-4326/ace26e UR - https://m2.mtmt.hu/api/publication/34296397 ID - 34296397 LA - English DB - MTMT ER - TY - JOUR AU - Maget, P. AU - Manas, P. AU - Artaud, J.-F. AU - Bourdelle, C. AU - Bucalossi, J. AU - Bufferand, H. AU - Ciraolo, G. AU - Desgranges, C. AU - Devynck, P. AU - Dumont, R. AU - Fedorczak, N. AU - Felici, F. AU - Goniche, M. AU - Guillemaut, C. AU - Guirlet, R. AU - Gunn, J.P. AU - Loarer, T. AU - Morales, J. AU - Sauter, O. AU - Van, Mulders S. AU - Vézinet, D. TI - Healing plasma current ramp-up by nitrogen seeding in the full tungsten environment of WEST JF - PLASMA PHYSICS AND CONTROLLED FUSION J2 - PLASMA PHYS CONTR F VL - 64 PY - 2022 IS - 4 SN - 0741-3335 DO - 10.1088/1361-6587/ac4b93 UR - https://m2.mtmt.hu/api/publication/32757673 ID - 32757673 LA - English DB - MTMT ER - TY - JOUR AU - Meng, L.Y. AU - Wang, L. AU - Wang, H.Q. AU - Deng, G.Z. AU - Si, H. AU - Li, K.D. AU - Xu, G.S. AU - Yuan, Q.P. AU - Guo, H.Y. AU - Eldon, D. AU - Garofalo, A.M. AU - Leonard, A.W. AU - Hyatt, A. AU - Humphreys, D. AU - Gong, X.Z. AU - Liu, J.B. AU - Xu, J.C. AU - Liang, R.R. AU - Zhong, F.B. AU - Lin, X. AU - Duan, Y.M. AU - Zang, Q. AU - Zhang, L. AU - Ding, F. AU - Yang, Z.S. AU - Zhang, B. AU - Zhang, T. TI - Divertor plasma behaviors with neon seeding at different locations on EAST with ITER-like divertor JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 62 PY - 2022 IS - 8 PG - 13 SN - 0029-5515 DO - 10.1088/1741-4326/ac74cf UR - https://m2.mtmt.hu/api/publication/33334161 ID - 33334161 N1 - Export Date: 26 February 2024 CODEN: NUFUA LA - English DB - MTMT ER - TY - JOUR AU - Ye, DW AU - Ding, F AU - Li, KD AU - Hu, ZH AU - Zhang, L AU - Chen, XH AU - Zhang, Q AU - Zhao, PA AU - He, T AU - Meng, LY AU - Ye, KX AU - Zhong, FB AU - Duan, YM AU - Ding, R AU - Wang, L AU - Xu, GS AU - Luo, GN TI - Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak JF - CHINESE PHYSICS B J2 - CHINESE PHYS B VL - 31 PY - 2022 IS - 6 PG - 6 SN - 1674-1056 DO - 10.1088/1674-1056/ac4f58 UR - https://m2.mtmt.hu/api/publication/32994681 ID - 32994681 LA - English DB - MTMT ER - TY - JOUR AU - Antunes, R. AU - Marot, L. AU - Romero-Muniz, C. AU - Steiner, R. AU - Meyer, E. TI - The role of tungsten chemical state and boron on ammonia formation using N-2-H-2 radiofrequency discharges JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 61 PY - 2021 IS - 12 PG - 12 SN - 0029-5515 DO - 10.1088/1741-4326/ac33c6 UR - https://m2.mtmt.hu/api/publication/33306683 ID - 33306683 AB - This work aims at investigating the role of tungsten and boron surfaces on ammonia production with N-2-H-2 radiofrequency plasmas at 3 Pa. The experiments combine the analysis of the reaction products and surface chemical environment using mass spectrometry and x-ray photoelectron spectroscopy (XPS). We show that NH3 is formed upon discharges of N-2 or H-2 after having exposed a tungsten (W) foil to H-2 or N-2, respectively. A higher amount of ammonia is formed for the N-2-then-H-2 case, which we explain by the larger number of Eley-Rideal reaction channels for the formation of NH x (s) and the lower surface diffusion barrier for adsorbed hydrogen, calculated using the density functional theory (DFT). As a result, H(s) combines with N(s) or NH x (s) through Langmuir-Hinshelwood at a faster rate than N(s) combines with another N(s). The amount of NH3 formed with N-2-H-2 discharges after conditioning the tungsten foil with H-2, N-2 or O-2 was also investigated. We observed that this pre-conditioning plays no major role on the amount of NH3 detected with the residual gas analyser, albeit a small decrease was observed after H-2 contamination. With DFT, the adsorption energies of H on WO3 and W are found to be similar, while the adsorption of N on WO3 is significantly weaker. The similar NH3 concentrations obtained with a clean and oxidized tungsten surface thus suggest that the adsorption of N does not limit the formation rate of ammonia. The production of NH3 on boron was evaluated as well. The boron surface reduced the amount of detected ammonia almost by half. On the one side, a significant amount of H-2 was removed from the surface during the Ar cleaning that followed, which suggests a strong retention of hydrogen. On the other side, the XPS data reveals that nitrogen forms strong bonds with boron and impurities on the surface, regardless on whether hydrogen is previously present on the surface or in the plasma volume. The presence of hydrogen in the plasma volume, simultaneously with nitrogen or after nitrogen exposure, is nevertheless necessary for the formation of NH(s) and NH2(s). No NH3(s) was however detected with XPS. The increased retention of both hydrogen and nitrogen on the boron surface may thus hinder the formation of NH3. LA - English DB - MTMT ER - TY - JOUR AU - Ghiorghiu, F AU - Aissou, T AU - Minissale, M AU - Angot, T AU - De, Temmerman G AU - Bisson, R TI - Nitrogen retention and ammonia production on tungsten JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 61 PY - 2021 IS - 12 SN - 0029-5515 DO - 10.1088/1741-4326/ac3698 UR - https://m2.mtmt.hu/api/publication/32832271 ID - 32832271 AB - We report a systematic study that quantifies nitrogen retention and ammonia production on tungsten and that sheds light on the mechanism for ammonia formation on ITER's divertor material. Saturation of the nitrogen-implanted layer in polycrystalline tungsten is observed at room temperature for a nitrogen ion fluence in the low 10(21) N+ m(-2) range. Nitrogen desorption from this N-implanted layer occurs in the 800-1100 K temperature range and exhibits a zero-order kinetics with an activation energy of 1.45 eV and a prefactor of 5 x 10(24) m(-2) s(-1). Following nitrogen and deuterium co-implantation, deuterated ammonia production is observed during temperature programmed desorption between 350 K and 650 K in conjunction with deuterium desorption. In contrast, nitrogen desorption still occurs above 800 K. Significant production of ammonia is obtained only when the nitrogen layer created by ion implantation is approaching saturation and the amount of nitrogen lost to ammonia production is only in the percent range. This result is understood by repeating cycles of deuterium implantation and thermo-desorption below the desorption temperature of the nitrogen layer. The exponential decay of the amount of produced ammonia with cycle number demonstrates that nitrogen diffusion to the surface is negligible in the ammonia production temperature range and that ammonia formation occurs at the outermost surface layer. The maximum quantity of ammonia produced from the present N implanted layer is below 2 x 10(18) ND3 m(-2), which is limited by the nitrogen atom surface density. Surface vibrational spectroscopy demonstrates the presence of ammonia precursors on the nitrogen-implanted tungsten surface upon deuterium implantation. These ammonia precursors can be created also at room temperature through the dissociative chemisorption of thermal D-2 catalysed by nitrogen present at the tungsten surface and, more efficiently, by adsorption of deuterium atoms. LA - English DB - MTMT ER - TY - JOUR AU - Henderson, S.S. AU - Bernert, M. AU - Giroud, C. AU - Brida, D. AU - Cavedon, M. AU - David, P. AU - Dux, R. AU - Harrison, J.R. AU - Huber, A. AU - Kallenbach, A. AU - Karhunen, J. AU - Lomanowski, B. AU - Matthews, G. AU - Meigs, A. AU - Pitts, R.A. AU - Reimold, F. AU - Reinke, M.L. AU - Silburn, S. AU - Vianello, N. AU - Wiesen, S. AU - Wischmeier, M. ED - EUROfusion, MST1 team / Collaborative Organization ED - ASDEX, Upgrade team / Collaborative Organization ED - JET, contributors / Collaborative Organization TI - Parameter dependencies of the experimental nitrogen concentration required for detachment on ASDEX Upgrade and JET JF - NUCLEAR MATERIALS AND ENERGY J2 - NUCL MATER ENERGY VL - 28 PY - 2021 PG - 9 SN - 2352-1791 DO - 10.1016/j.nme.2021.101000 UR - https://m2.mtmt.hu/api/publication/33271671 ID - 33271671 LA - English DB - MTMT ER - TY - JOUR AU - Kallenbach, A AU - Bernert, M AU - David, P AU - Dunne, MG AU - Dux, R AU - Fable, E AU - Fischer, R AU - Gil, L AU - Gorler, T AU - Janky, F AU - McDermott, RM AU - Suttrop, W AU - Tardini, G AU - Wischmeier, M AU - Plasma, Frigyes ED - EUROfusion, MST1 Team / Collaborative Organization TI - Developments towards an ELM-free pedestal radiative cooling scenario using noble gas seeding in ASDEX Upgrade JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 61 PY - 2021 IS - 1 PG - 11 SN - 0029-5515 DO - 10.1088/1741-4326/abbba0 UR - https://m2.mtmt.hu/api/publication/32003518 ID - 32003518 LA - English DB - MTMT ER - TY - JOUR AU - Li, KD AU - Yang, ZS AU - Wang, HQ AU - Xu, GS AU - Yuan, QP AU - Guo, HY AU - Eldon, D AU - Hyatt, AL AU - Humphreys, D AU - Chen, MW AU - Wu, K AU - Liu, JB AU - He, T AU - Yang, QQ AU - Lin, X AU - Xu, JC AU - Meng, LY AU - Ding, F AU - Chen, XH AU - Luo, Y AU - Wu, JH AU - Duan, YM AU - Luo, GN AU - Wang, L TI - Comparison of divertor behavior and plasma confinement between argon and neon seeding in EAST JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 61 PY - 2021 IS - 6 PG - 12 SN - 0029-5515 DO - 10.1088/1741-4326/abf418 UR - https://m2.mtmt.hu/api/publication/32056889 ID - 32056889 LA - English DB - MTMT ER - TY - JOUR AU - Loarte, A AU - Polevoi, AR AU - Schneider, M AU - Pinches, SD AU - Fable, E AU - Asp, EM AU - Baranov, Y AU - Casson, F AU - Corrigan, G AU - Garzotti, L AU - Harting, D AU - Knight, P AU - Koechl, F AU - Parail, V AU - Farina, D AU - Figini, L AU - Nordman, H AU - Strand, P AU - Sartori, R TI - H-mode plasmas in the pre-fusion power operation 1 phase of the ITER research plan JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 61 PY - 2021 IS - 7 PG - 14 SN - 0029-5515 DO - 10.1088/1741-4326/abfb13 UR - https://m2.mtmt.hu/api/publication/32093281 ID - 32093281 N1 - ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, Durance, St Paul Lez, 13067, France Max-Planck-Insitut für Plasmaphysik, Boltzmannstr. 2, Garching, 85748, Germany Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom Istituto di Fisica Del Plasma CNR, Milano, 20125, Italy Chalmers University of Technology, Göteborg, Sweden Fusion for Energy Joint Undertaking, Josep Pla 2, Barcelona, 08019, Spain Cited By :11 Export Date: 4 July 2023 CODEN: NUFUA Correspondence Address: Loarte, A.; ITER Organization, CS 90 046, Durance, France; email: alberto.loarte@iter.org LA - English DB - MTMT ER - TY - JOUR AU - Tanaka, Masahiro AU - Kato, Hiromi AU - Suzuki, Naoyuki AU - Chimura, Hiroki TI - Detection of Ammonia and Deuterated Hydrocarbons in Exhaust Gas by Infrared Absorption Spectroscopy duringWall Conditioning JF - PLASMA AND FUSION RESEARCH J2 - PLASMA FUSION RES VL - 16 PY - 2021 PG - 5 SN - 1880-6821 DO - 10.1585/pfr.16.2405062 UR - https://m2.mtmt.hu/api/publication/32404885 ID - 32404885 AB - To detect ammonia and deuterated hydrocarbons in exhaust gas from the Large Helical Device (LHD), infrared absorption spectrometry, FTIR with a long optical path gas cell, was applied. Ammonia (NH3) and deuterated hydrocarbons (CxHyDz) could be detected during the first operations of wall baking at 368K and the D-2 glow discharge conducted after vacuum vessel closure. The concentration of ammonia increased with increasing baking temperature, and deuterated ammonia was not detected. Thus, the ammonia, which likely originated from sweat of workers produced during vacuum vessel maintenance activities, was released from the vacuum vessel wall. Hydrocarbons were likely produced by chemical sputtering of carbon tiles and were deuterated by a hydrogen isotope exchange reaction due to D-2 glow discharge, while H2O was released from the vacuum vessel during wall baking. It was confirmed that ammonia and various types of deuterated hydrocarbons could be measured discriminately by an FTIR spectroscopy system using a long optical path gas cell. (C) 2021 The Japan Society of Plasma Science and Nuclear Fusion Research LA - English DB - MTMT ER - TY - JOUR AU - Ben Yaala, M AU - Scherrer, DF AU - Saeedi, A AU - Moser, L AU - Soni, K AU - Steiner, R AU - De, Temmerman G AU - Oberkofler, M AU - Marot, L AU - Meyer, E TI - Plasma-activated catalytic formation of ammonia from N-2?H-2: influence of temperature and noble gas addition JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 60 PY - 2020 IS - 1 PG - 12 SN - 0029-5515 DO - 10.1088/1741-4326/ab519c UR - https://m2.mtmt.hu/api/publication/30976340 ID - 30976340 LA - English DB - MTMT ER - TY - JOUR AU - Dittmar, T. AU - Loarer, T. AU - Drenik, A. AU - Bourdelle, C. AU - Brezinsek, S. AU - Desgranges, C. AU - Douai, D. AU - Fedorczak, N. AU - Guirlet, R. AU - Gunn, J. AU - Meyer, O. AU - Laguardia, L. AU - Tsitrone, E. TI - Long pulse D2and N2seeded discharges on the upper actively cooled tungsten divertor of WEST JF - PHYSICA SCRIPTA J2 - PHYS SCR VL - T171 PY - 2020 IS - 1 PG - 5 SN - 0031-8949 DO - 10.1088/1402-4896/ab753f UR - https://m2.mtmt.hu/api/publication/33264723 ID - 33264723 LA - English DB - MTMT ER - TY - JOUR AU - Hitzler, F AU - Wischmeier, M AU - Reimold, F AU - Coster, DP TI - Impurity transport and divertor retention in Ar and N seeded SOLPS 5.0 simulations for ASDEX Upgrade JF - PLASMA PHYSICS AND CONTROLLED FUSION J2 - PLASMA PHYS CONTR F VL - 62 PY - 2020 IS - 8 SN - 0741-3335 DO - 10.1088/1361-6587/ab9b00 UR - https://m2.mtmt.hu/api/publication/31418133 ID - 31418133 LA - English DB - MTMT ER - TY - JOUR AU - Loarer, T. AU - Dittmar, T. AU - Tsitrone, E. AU - Bisson, R. AU - Bourdelle, C. AU - Brezinsek, S. AU - Bucalossi, J. AU - Corre, Y. AU - Delpech, L. AU - Desgranges, C. AU - De, Temmerman G. AU - Douai, D. AU - Ekedahl, A. AU - Fedorczak, N. AU - Gallo, A. AU - Gaspar, J. AU - Gunn, J. AU - Houry, M. AU - Maget, P. AU - Mitteau, R. AU - Moreau, P. TI - Long discharges in a steady state with D2and N2on the actively cooled tungsten upper divertor in WEST JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 60 PY - 2020 IS - 12 PG - 12 SN - 0029-5515 DO - 10.1088/1741-4326/abb919 UR - https://m2.mtmt.hu/api/publication/33336276 ID - 33336276 LA - English DB - MTMT ER - TY - JOUR AU - Fukukawa, S AU - Nezu, A AU - Akatsuka, H TI - Non-equilibrium characteristics of vibrational and rotational temperatures of N-2-B and C States puffed onto argon arc jet plume JF - JAPANESE JOURNAL OF APPLIED PHYSICS (2008) J2 - JPN J APPL PHYS VL - 58 PY - 2019 IS - 9 PG - 9 SN - 0021-4922 DO - 10.7567/1347-4065/ab3c41 UR - https://m2.mtmt.hu/api/publication/30990585 ID - 30990585 LA - English DB - MTMT ER - TY - JOUR AU - Lunsford, R AU - Rohde, V AU - Bortolon, A AU - Dux, R AU - Herrmann, A AU - Kallenbach, A AU - McDermott, RM AU - David, P AU - Drenik, A AU - Laggner, F AU - Maingi, R AU - Mansfield, DK AU - Nagy, A AU - Neu, R AU - Wolfrum, E TI - Active conditioning of ASDEX Upgrade tungsten plasma-facing components and discharge enhancement through boron and boron nitride particulate injection JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 59 PY - 2019 IS - 12 PG - 13 SN - 0029-5515 DO - 10.1088/1741-4326/ab4095 UR - https://m2.mtmt.hu/api/publication/30976862 ID - 30976862 LA - English DB - MTMT ER - TY - JOUR AU - Meyer, H AU - Aguiam, D AU - Angioni, C AU - Albert, CG AU - Arden, N AU - Parra, RA AU - Asunta, O AU - de, Baar M AU - Balden, M AU - Bandaru, V AU - Behler, K AU - Bergmann, A AU - Bernardo, J AU - Bernert, M AU - Biancalani, A AU - Bilato, R AU - Birkenmeier, G AU - Blanken, TC AU - Bobkov, V AU - Bock, A AU - Bolzonella, T AU - Bortolon, A AU - Boswirth, B AU - Bottereau, C AU - Bottino, A AU - van, den Brand H AU - Brezinsek, S AU - Brida, D AU - Brochard, F AU - Bruhn, C AU - Buchanan, J AU - Buhler, A AU - Burckhart, A AU - Camenen, Y AU - Carlton, D AU - Carr, M AU - Carralero, D AU - Castaldo, C AU - Cavedon, M AU - Cazzaniga, C AU - Ceccuzzi, S AU - Challis, C AU - Chankin, A AU - Chapman, S AU - Cianfarani, C AU - Clairet, F AU - Coda, S AU - Coelho, R AU - Coenen, JW AU - Colas, L AU - Conway, GD AU - Costea, S AU - Coster, DP AU - Cote, TB AU - Creely, A AU - Croci, G AU - Cseh, Gábor AU - Czarnecka, A AU - Cziegler, I AU - D'Arcangelo, O AU - David, P AU - Day, C AU - Delogu, R AU - de, Marne P AU - Denk, SS AU - Denner, P AU - Dibon, M AU - Di, Siena A AU - Douai, D AU - Drenik, A AU - Drube, R AU - Dunne, M AU - Duval, BP AU - Dux, R AU - Eich, T AU - Elgeti, S AU - Engelhardt, K AU - Erdős, Boglárka AU - Erofeev, I AU - Esposito, B AU - Fable, E AU - Faitsch, M AU - Fantz, U AU - Faugel, H AU - Faust, I AU - Felici, F AU - Ferreira, J AU - Fietz, S AU - Figuereido, A AU - Fischer, R AU - Ford, O AU - Frassinetti, L AU - Freethy, S AU - Froschle, M AU - Fuchert, G AU - Fuchs, JC AU - Funfgelder, H AU - Galazka, K AU - Galdon-Quiroga, J AU - Gallo, A AU - Gao, Y AU - Garavaglia, S AU - Garcia-Carrasco, A AU - Garcia-Munoz, M AU - Geiger, B AU - Giannone, L AU - Gil, L AU - Giovannozzi, E AU - Gleason-Gonzalez, C AU - Gloggler, S AU - Gobbin, M AU - Gorler, T AU - Ortiz, IG AU - Martin, JG AU - Goodman, T AU - Gorini, G AU - Gradic, D AU - Grater, A AU - Granucci, G AU - Greuner, H AU - Griener, M AU - Groth, M AU - Gude, A AU - Gunter, S AU - Guimarais, L AU - Haas, G AU - Hakola, AH AU - Ham, C AU - Happel, T AU - den, Harder N AU - Harrer, GF AU - Harrison, J AU - Hauer, V AU - Hayward-Schneider, T AU - Hegna, CC AU - Heinemann, B AU - Heinzel, S AU - Hellsten, T AU - Henderson, S AU - Hennequin, P AU - Herrmann, A AU - Heyn, MF AU - Heyn, E AU - Hitzler, F AU - Hobirk, J AU - Hofler, K AU - Holzl, M AU - Hoschen, T AU - Holm, JH AU - Hopf, C AU - Hornsby, WA AU - Horvath, L AU - Houben, A AU - Huber, A AU - Igochine, V AU - Ilkei, Tamás AU - Ivanova-Stanik, I AU - Jacob, W AU - Jacobsen, AS AU - Janky, F AU - van, Vuuren AJ AU - Jardin, A AU - Jaulmes, F AU - Jenko, F AU - Jensen, T AU - Joffrin, E AU - Kasemann, CP AU - Kallenbach, A AU - Kálvin, Sándor Csaba AU - Kantor, M AU - Kappatou, A AU - Kardaun, O AU - Karhunen, J AU - Kasilov, S AU - Kazakov, Y AU - Kernbichler, W AU - Kirk, A AU - Hansen, SK AU - Klevarova, V AU - Kocsis, Lajos Gábor AU - Kohn, A AU - Koubiti, M AU - Krieger, K AU - Krivska, A AU - Kramer-Flecken, A AU - Kudlacek, O AU - Kurki-Suonio, T AU - Kurzan, B AU - Labit, B AU - Lackner, K AU - Laggner, F AU - Lang, PT AU - Lauber, P AU - Lebschy, A AU - Leuthold, N AU - Li, M AU - Linder, O AU - Lipschultz, B AU - Liu, F AU - Liu, Y AU - Lohs, A AU - Lu, Z AU - di, Cortemiglia TL AU - Luhmann, NC AU - Lunsford, R AU - Lunt, T AU - Lyssoivan, A AU - Maceina, T AU - Madsen, J AU - Maggiora, R AU - Maier, H AU - Maj, O AU - Mailloux, J AU - Maingi, R AU - Maljaars, E AU - Manas, P AU - Mancini, A AU - Manhard, A AU - Manso, ME AU - Mantica, P AU - Mantsinen, M AU - Manz, P AU - Maraschek, M AU - Martens, C AU - Martin, P AU - Marrelli, L AU - Martitsch, A AU - Mayer, M AU - Mazon, D AU - McCarthy, PJ AU - McDermott, R AU - Meister, H AU - Medvedeva, A AU - Merkel, R AU - Merle, A AU - Mertens, V AU - Meshcheriakov, D AU - Meyer, O AU - Miettunen, J AU - Milanesio, D AU - Mink, F AU - Mlynek, A AU - Monaco, F AU - Moon, C AU - Nabais, F AU - Nemes-Czopf, A AU - Neu, G AU - Neu, R AU - Nielsen, AH AU - Nielsen, SK AU - Nikolaeva, V AU - Nocente, M AU - Noterdaeme, JM AU - Novikau, I AU - Nowak, S AU - Oberkofler, M AU - Oberparleiter, M AU - Ochoukov, R AU - Odstrcil, T AU - Olsen, J AU - Orain, F AU - Palermo, F AU - Pan, O AU - Papp, G AU - Perez, IP AU - Pau, A AU - Pautasso, G AU - Penzel, F AU - Petersson, P AU - Acosta, JP AU - Piovesan, P AU - Piron, C AU - Pitts, R AU - Plank, U AU - Plaum, B AU - Ploeckl, B AU - Plyusnin, V AU - Pokol, G AU - Poli, E AU - Porte, L AU - Potzel, S AU - Prisiazhniuk, D AU - Putterich, T AU - Ramisch, M AU - Rasmussen, J AU - Ratt, GA AU - Ratynskaia, S AU - Raupp, G AU - Ravera, GL AU - Réfy, Dániel AU - Reich, M AU - Reimold, F AU - Reiser, D AU - Ribeiro, T AU - Riesch, J AU - Riedl, R AU - Rittich, D AU - Rivero-Rodriguez, JF AU - Rocchi, G AU - Rodriguez-Ramos, M AU - Rohde, V AU - Ross, A AU - Rott, M AU - Rubel, M AU - Ryan, D AU - Ryter, F AU - Saarelma, S AU - Salewski, M AU - Salmi, A AU - Sanchis-Sanchez, L AU - Santos, J AU - Sauter, O AU - Scarabosio, A AU - Schall, G AU - Schmid, K AU - Schmitz, O AU - Schneider, PA AU - Schrittwieser, R AU - Schubert, M AU - Schwarz-Selinger, T AU - Schweinzer, J AU - Scott, B AU - Sehmer, T AU - Seliunin, E AU - Sertoli, M AU - Shabbir, A AU - Shalpegin, A AU - Shao, L AU - Sharapov, S AU - Sias, G AU - Siccinio, M AU - Sieglin, B AU - Sigalov, A AU - Silva, A AU - Silva, C AU - Silvagni, D AU - Simon, P AU - Simpson, J AU - Smigelskis, E AU - Snicker, A AU - Sommariva, C AU - Sozzi, C AU - Spolaore, M AU - Stegmeir, A AU - Stejner, M AU - Stober, J AU - Stroth, U AU - Strumberger, E AU - Suarez, G AU - Sun, HJ AU - Suttrop, W AU - Sytova, E AU - Szepesi, Tamás Zoltán AU - Tál, Balázs AU - Tala, T AU - Tardini, G AU - Tardocchi, M AU - Teschke, M AU - Terranova, D AU - Tierens, W AU - Thoren, E AU - Told, D AU - Tolias, P AU - Tudisco, O AU - Treutterer, W AU - Trier, E AU - Tripsky, M AU - Valisa, M AU - Valovic, M AU - Vanovac, B AU - van, Vugt D AU - Varoutis, S AU - Verdoolaege, G AU - Vianello, N AU - Vicente, J AU - Vierle, T AU - Viezzer, E AU - von, Toussaint U AU - Wagner, D AU - Wang, N AU - Wang, X AU - Weiland, M AU - White, AE AU - Wiesen, S AU - Willensdorfer, M AU - Wiringer, B AU - Wischmeier, M AU - Wolf, R AU - Wolfrum, E AU - Xiang, L AU - Yang, Q AU - Yang, Z AU - Yu, Q AU - Zagorski, R AU - Zammuto, I AU - Zhang, W AU - van, Zeeland M AU - Zehetbauer, T AU - Zilker, M AU - Zoletnik, Sándor AU - Zohm, H TI - Overview of physics studies on ASDEX Upgrade JF - NUCLEAR FUSION J2 - NUCL FUSION VL - 59 PY - 2019 IS - 11 PG - 21 SN - 0029-5515 DO - 10.1088/1741-4326/ab18b8 UR - https://m2.mtmt.hu/api/publication/31813434 ID - 31813434 N1 - Export Date: 10 January 2024 CODEN: NUFUA LA - English DB - MTMT ER - TY - JOUR AU - Pitts, R. A. AU - Bonnin, X. AU - Escourbiac, F. AU - Frerichs, H. AU - Gunn, J. P. AU - Hirai, T. AU - Kukushkin, A. S. AU - Kaveeva, E. AU - Miller, M. A. AU - Moulton, D. AU - Rozhansky, V. AU - Senichenkov, I. AU - Sytova, E. AU - Schmitz, O. AU - Stangeby, P. C. AU - De Temmerman, G. AU - Veselova, I. AU - Wiesen, S. TI - Physics basis for the first ITER tungsten divertor JF - NUCLEAR MATERIALS AND ENERGY J2 - NUCL MATER ENERGY VL - 20 PY - 2019 PG - 25 SN - 2352-1791 DO - 10.1016/j.nme.2019.100696 UR - https://m2.mtmt.hu/api/publication/31016928 ID - 31016928 AB - On the eve of component procurement, this paper discusses the present physics basis for the first ITER tungsten (W) divertor, beginning with a reminder of the key elements defining the overall design, and outlining relevant aspects of the Research Plan accompanying the new "staged approach" to ITER nuclear operations which fixes the overall divertor lifetime constraint. The principal focus is on the main design driver, steady state power fluxes in the DT phases, obtained from simulations using the 2-D SOLPS-4.3 and SOLPS-ITER plasma boundary codes, assuming the use of the low Z seeding impurities nitrogen (N) and neon (Ne). A new perspective on the simulation database is adopted, concentrating purely on the divertor physics aspects rather than on the core-edge integration, which has been studied extensively in the course of the divertor design evolution and is published elsewhere. Emphasis is placed on factors which may increase the peak steady state loads: divertor target shaping for component misalignment protection, the influence of fluid drifts, and the consequences of narrow scrape-off layer heat flux channels. All tend to push the divertor into an operating space at higher sub-divertor neutral pressure in order to remain at power flux densities acceptable for the target material. However, a revised criterion for the maximum tolerable loads based on avoidance of W recrystallization, sets an upper limit potentially similar to 50% higher than the previously accepted value of similar to 10 MW m(-2), a consequence both of the choice of material and the finalized component design. Although the simulation database is currently restricted to the 2-D toroidally symmetric situation, considerable progress is now also being made using the EMC3-Eirene 3-D code suite for the assessment of power loading in the presence of magnetic perturbations for ELM control. Some new results for low input power corresponding to the early H-mode operation phases are reported, showing that even if realistic plasma screening is taken into account, significant asymmetric divertor heat fluxes may arise far from the unperturbed strike point. The issue of tolerable limits for transient heat pulses is an open and key question. A new scaling for ELM power deposition has shown that whilst there may be more latitude for operation at higher current without ELM control, the ultimate limit is likely to be set more by material fatigue under large numbers of sub-threshold melting events. LA - English DB - MTMT ER -