@article{MTMT:33596500, title = {A homlokmarás kutatásának főbb eredményei 1. rész: A forgácsolóerő vizsgálata}, url = {https://m2.mtmt.hu/api/publication/33596500}, author = {Makkai, Tamás}, doi = {10.35925/j.multi.2022.5.11}, journal-iso = {MULTIDISZCIPLINÁRIS TUDOMÁNYOK}, journal = {MULTIDISZCIPLINÁRIS TUDOMÁNYOK: A MISKOLCI EGYETEM KÖZLEMÉNYE}, volume = {12}, unique-id = {33596500}, issn = {2062-9737}, year = {2022}, eissn = {2786-1465}, pages = {110-123} } @inproceedings{MTMT:33370694, title = {HIGH STRENGTH STRUCTURAL STEELS DRY MACHINING INVESTIGATION}, url = {https://m2.mtmt.hu/api/publication/33370694}, author = {PELIKÁN, Lukáš and PETRÁŠEK, Šimon and HLAVŮŇKOVÁ, Lucie and STRÁNSKÝ, Ondřej and SLANÝ, Michal}, booktitle = {Technological Forum 2022}, unique-id = {33370694}, year = {2022}, pages = {158-164} } @article{MTMT:32202147, title = {Study on model for cutting force when milling SCM440 steel}, url = {https://m2.mtmt.hu/api/publication/32202147}, author = {Thien, Nguyen Van and Trung, Do Duc}, doi = {10.21303/2461-4262.2021.001743}, journal = {EUREKA: Physics and Engineering}, volume = {5}, unique-id = {32202147}, issn = {2461-4254}, abstract = {This article presents empirical study results when milling SCM440 steel. The cutting insert to be used was a TiN coated cutting insert with tool tip radius of 0.5 mm. Experimental process was carried out with 18 experiments according to Box-Behnken matrix, in which cutting speed, feed rate and cutting depth were selected as the input parameters of each experiment. In addition, cutting force was selected as the output parameter. Analysis of experimental results has determined the influence of the input parameters as well as the interaction between them on the output parameters. From the experimental results, a regression model showing the relationship between cutting force and input parameters was built. Box-Cox and Johnson data transformations were applied to construct two other models of cutting force. These three regression models were used to predict cutting force and compare with experimental results. Using parameters including coefficient of determination (R-Sq), adjusted coefficient of determination (R-Sq(adj)) and percentage mean absolute error (% MAE) between the results predicted by the models and the experimental results are the criteria to compare the accuracy of the cutting force models. The results have determined that the two models using two data transformations have higher accuracy than model not using two data transformations. A comparison of the model using the Box-Cox transformation and the model using the Johnson transformation was made with a t-test. The results confirmed that these two models have equal accuracy. Finally, the development direction for the next study is mentioned in this article}, year = {2021}, eissn = {2461-4262}, pages = {23-35} } @article{MTMT:31625427, title = {Influence of fibre orientation on cutting force in up and down milling of UD-CFRP composites}, url = {https://m2.mtmt.hu/api/publication/31625427}, author = {Geier, Norbert}, doi = {10.1007/s00170-020-06163-3}, journal-iso = {INT J ADV MANUFACT TECHNOL}, journal = {INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY}, volume = {111}, unique-id = {31625427}, issn = {0268-3768}, year = {2020}, eissn = {1433-3015}, pages = {881-893}, orcid-numbers = {Geier, Norbert/0000-0001-7937-7246} } @article{MTMT:31254168, title = {Surface flatness and roughness evolution after magnetic assisted ball burnishing of magnetizable and non-magnetizable materials}, url = {https://m2.mtmt.hu/api/publication/31254168}, author = {Kovács, Zsolt Ferenc and Viharos, Zsolt János and Kodácsy, János}, doi = {10.1016/j.measurement.2020.107750}, journal-iso = {MEASUREMENT}, journal = {MEASUREMENT}, volume = {158}, unique-id = {31254168}, issn = {0263-2241}, year = {2020}, eissn = {1873-412X}, orcid-numbers = {Kovács, Zsolt Ferenc/0000-0002-6995-6508; Viharos, Zsolt János/0000-0002-9561-6857} } @article{MTMT:30685894, title = {The effect of radial rake angle on chip thickness in the case of face milling}, url = {https://m2.mtmt.hu/api/publication/30685894}, author = {Póka, György and Németh, István}, doi = {10.1177/0954405419849245}, journal-iso = {P I MECH ENG B-J ENG}, journal = {PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE}, volume = {234}, unique-id = {30685894}, issn = {0954-4054}, abstract = {The existing models of undeformed chip thickness for face milling found in the literature neglect the radial rake angle of the tool, and they assume that its value is zero. The effect of the variation of the radial rake angle has not yet been discussed in the literature. As a novelty, this article investigates such an effect, especially the effect on chip thickness. A new tool model is proposed that takes into account the radial rake angle. A new method to calculate the chip thickness has been developed that uses the new tool model and is based on several existing numerical and approximation methods. It is analytically proved that the effect of the radial rake angle must be taken into account for calculating accurate results; however, in the case of lower feed rates, that effect is insignificant. The presented procedures are evaluated with respect to their accuracy and computing requirements. The proposed new methods have been verified by cutting experiments.}, year = {2020}, eissn = {2041-1975}, pages = {40-51}, orcid-numbers = {Póka, György/0000-0002-7585-986X; Németh, István/0000-0001-7122-3891} } @article{MTMT:30598095, title = {Analysis of thrust force and characteristics of uncut fibres at non-conventional oriented drilling of unidirectional carbon fibre-reinforced plastic (UD-CFRP) composite laminates}, url = {https://m2.mtmt.hu/api/publication/30598095}, author = {Geier, Norbert and Szalay, Tibor and Takács, Márton}, doi = {10.1007/s00170-018-2895-8}, journal-iso = {INT J ADV MANUFACT TECHNOL}, journal = {INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY}, volume = {100}, unique-id = {30598095}, issn = {0268-3768}, abstract = {Carbon fibre-reinforced plastic (CFRP) is an often-used structural material in the high-tech industries, like aerospace, wind turbine, sport, automobile, robotics and military. Due to both the growing application area of composites, and the advanced construction requirements, the used thickness of the CFRP plates increases, and the necessity of drilling holes on the sides of the plates (normal II direction) becomes even more important. Many researchers studied the machinability of UD-CFRP using numerous drilling experiments at the normal I direction. However, drilling experiments at normal II and axial directions were not published yet. The main objective of the present study is to analyse and discuss the influence of a non-conventional drilling direction on hole-quality parameters and on the thrust force. Drilling experiments were carried out in unidirectional CFRP at non-conventional drilling direction, based on central composite inscribed design. Influences of feed rate and cutting speed were analysed using response surface methodology (RSM) and analysis of variance (ANOVA) techniques. Characteristics of uncut fibres were analysed using digital image processing (DIP). The results have proved that the effect of the cutting speed is more significant when drilling UD-CFRP at the non-conventional drilling direction than at the conventional one. Furthermore, the specific feed force (k(f)) in the case of the non-conventional drilling direction was more than three times higher than the k(f) in the case of the conventional one.}, keywords = {Optimisation; Machinability; CFRP; thrust force; Uncut fibres}, year = {2019}, eissn = {1433-3015}, pages = {3139-3154}, orcid-numbers = {Geier, Norbert/0000-0001-7937-7246; Szalay, Tibor/0000-0003-3446-2898; Takács, Márton/0000-0001-6882-1540} } @mastersthesis{MTMT:3383924, title = {A forgácsleválasztás energetikai modelljének kiterjesztése nagy szilárdságú acél precíziós és mikroforgácsolási technológiájához}, url = {https://m2.mtmt.hu/api/publication/3383924}, author = {Biró, István}, publisher = {Budapest University of Technology and Economics}, unique-id = {3383924}, abstract = {A forgácsolás napjainkban és a hosszútávú jövőben is az alkatrészek gyártásának egyik leggyakrabban alkalmazott módszere. A műszaki termékeket jellemző miniatürizálás miatt egyre nagyobb hangsúly helyeződik a precíziós- és mikroforgácsolási eljárásokra, melyek során új, korszerű anyagok munkálandók meg. Doktori kutatásom során az S960QL minőségű, nagy szilárdságú szerkezeti acélon, szabályos élű szerszámmal végzett forgácsleválasztás körülményeit vizsgáltam. Ezt a forgácsolás energetikai jellemzőinek, azon belül a forgácsképzés és az ezzel járó deformációs folyamatok megvalósításához szükséges fajlagos forgácsolási erő értékelésével végeztem. A fajlagos erő modelljének olyan, a technológiai paraméterek függvényében történő kiterjesztését tűztem ki célul, melynek köszönhetően hatékonyan egyesíthető a már jól ismert makromegmunkálási zóna leírása a mikrométer nagyságrendű forgácsvastagság mellett történő forgácsoláséval. Kutatómunkám első lépéseként áttekintettem a vizsgált anyag minőségi csoportjának jellegzetességeit, illetve összefoglaltam azokat a folyamatjellemzőket és modellezési lehetőségeiket, melyek a forgácsolást a folyamat fenntartásának energiaszükséglete tekintetében jellemzik. Kutatási céljaim eléréséhez szisztematikus forgácsolási kísérleteket végeztem a technológiai paramétereknek adott tartományokon belül vett nagyszámú kombinációja mellett. Homlokmarási kísérleteket hajtottam végre annak érdekében, hogy a forgácsolás energetikai körülményeinek változását, a változás karakterisztikáját annak folyamatában vizsgálhassam. Ezt követően homlokbeszúró esztergálási teszteket realizáltam, melyeknek kettős feladata volt: egyrészt a marási kísérletekből kapott eredmények ellenőrzése, másrészt azon hipotéziseim igazolása, melyeket a homlokmarások adatainak kiértékelési eredményei és a vonatkozó szakirodalmi ismeretek összevetése alapján megfogalmaztam meg. Munkám eredményeként jegyezhető a megállapítás, miszerint az S960QL acél forgácsolása során a fajlagos forgácsolóerőnek az elméleti forgácsvastagság függvényében értelmezett görbéjében új szakaszhatár azonosítható a mikroméretű forgácsvastagság tartományán. Mérési adataim alapján azonosítottam a fajlagoserő-görbének az új szakaszhatár által határolt szakaszát a technológiai paraméterek vizsgált tartományára vonatkozóan, ahol a munkadarab-anyag felületi rétegének lokális rugalmas és képlékeny alakítása történik anyagleválasztás nélkül. Ily módon a szakaszhatár helye az anyagleválasztás alsó technológiai korlátját definiálja. Ezt alátámasztják a homlokbeszúró esztergálás kiértékelésének eredményei, melyeket célzottan úgy terveztem, hogy az anyagleválasztás során ténylegesen működő, deformálatlan forgácskeresztmetszet geometriai mérésére a forgácsolást követően lehetőségem legyen. Az ily módon validált homlokmarási adatok rámutattak, hogy az új szakaszhatárt azonosító forgácsvastagság értéke elsődlegesen az élenkénti előtolás, másodlagosan a forgácsoló sebesség növelésével növekszik. E jelenségek közvetetten azonosíthatók a szakirodalomban fellelhető független kutatási eredményekben is. Kutatómunkám további hozománya e tényszerű megállapítások mellett olyan kísérleti és kiértékelési módszer-együttes, mely lehetővé teszi a fajlagos forgácsolóerő részletes vizsgálatát mérési adatokra alapozva, kezelve az olyan tranziens jelenségeket is, mint a szerszámél belépése és kilépése az anyagból. A kiértékelési módszertanokat egyedi, jelen körülményekre specifikált szoftverekbe ágyaztam, biztosítva ezzel a mérési adatok hatékony és reprodukálható kiértékelését. A dolgozatban ismertetett kutatás folytatásaként említem újabb kísérletek elvégzését a technológiai paraméterek jelenleg nem vizsgált tartományán, továbbá az új tudományos megállapításaim érvényességének vizsgálatát más fémes anyagok esetére is.}, year = {2018}, orcid-numbers = {Biró, István/0000-0002-5616-0973} } @article{MTMT:30317951, title = {Finite element modelling of thin chip removal process}, url = {https://m2.mtmt.hu/api/publication/30317951}, author = {B, Z Balázs and M Takács}, journal-iso = {IOP CONF SER MATER SCI ENG}, journal = {IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING}, volume = {426}, unique-id = {30317951}, issn = {1757-8981}, abstract = {Micro milling is a continuously spreading, and therefore heavily researched technology. In this subject plenty of publications are highlighting the fact that there are many issues, which still has to be solved. Micro milling realizes thin chip removal process. In this paper 2D finite element simulation was performed to investigate the characteristics of small sized chip formation. Results of micro milling experiments were analysed too. This paper presents the results regarding effects of the cutting parameters (cutting speed, feed per tooth) on cutting temperature and machining forces at 2D finite element. Results based on different material models were compared with each other too.}, year = {2018}, eissn = {1757-899X}, pages = {012002} } @article{MTMT:3409487, title = {Researching the effects of feedrate and diamond grain size on edge chipping of milled granites}, url = {https://m2.mtmt.hu/api/publication/3409487}, author = {Gyurika, István Gábor}, doi = {10.17559/TV-20160504130353}, journal-iso = {TEH VJESN}, journal = {TEHNICKI VJESNIK-TECHNICAL GAZETTE}, volume = {25}, unique-id = {3409487}, issn = {1330-3651}, year = {2018}, eissn = {1848-6339}, pages = {49-55}, orcid-numbers = {Gyurika, István Gábor/0000-0003-3442-455X} } @article{MTMT:3328456, title = {Determination of the working gap and optimal machining parameters for magnetic assisted ball burnishing}, url = {https://m2.mtmt.hu/api/publication/3328456}, author = {Kovács, Zsolt Ferenc and Viharos, Zsolt János and Kodácsy, János}, doi = {10.1016/j.measurement.2018.01.033}, journal-iso = {MEASUREMENT}, journal = {MEASUREMENT}, volume = {118}, unique-id = {3328456}, issn = {0263-2241}, year = {2018}, eissn = {1873-412X}, pages = {172-180}, orcid-numbers = {Kovács, Zsolt Ferenc/0000-0002-6995-6508; Viharos, Zsolt János/0000-0002-9561-6857} } @article{MTMT:3077374, title = {Extension of empirical specific cutting force model for the process of fine chip-removing milling}, url = {https://m2.mtmt.hu/api/publication/3077374}, author = {Biró, István and Szalay, Tibor}, doi = {10.1007/s00170-016-8957-x}, journal-iso = {INT J ADV MANUFACT TECHNOL}, journal = {INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY}, volume = {88}, unique-id = {3077374}, issn = {0268-3768}, abstract = {Specific cutting force is a frequently used parameter to classify and describe the energetic environment of mechanical machining operations. It defines the ratio of cutting forces and theoretical chip section during machining. This definition makes it possible to create general technological models for precise process planning. Classical models of cutting forces already indicate that specific cutting force cannot be modelled using a single low-level analytical function due to the marked presence of size effect. The problem is amplified in the case of micro-chip forming, where the relative scale of elastic and plastic deformations in the machined material differ from those experienced in conventional cutting conditions. Previous research proved that boundaries of specific cutting forces can be defined by values of exact uncut chip thicknesses, in which case the sections of specific cutting force may indicate different types of material deforming processes. The aim of current research presented in this paper is to extend the empirical model of specific cutting force for fine chip-removing cutting processes by identifying a new boundary section of uncut chip thickness. Therefore, a new boundary chip thickness was defined based on data obtained with reference to experimental cutting force. New boundary chip thickness follows the so-far proven tendencies of already known section borders and this enables the extension of the validity range of classical approaches presented by specific cutting force models beyond macro-scaled chip forming to micro-scaled chip forming processes. The extension of the model considers the effect of cutting parameters, primarily that of feed rate.}, year = {2017}, eissn = {1433-3015}, pages = {2735-2743}, orcid-numbers = {Biró, István/0000-0002-5616-0973; Szalay, Tibor/0000-0003-3446-2898} } @article{MTMT:3102549, title = {A novel machinability test for determining the cutting behaviour of iron-based, carbon-containing and copper-containing powder metallurgy steels (PMS)}, url = {https://m2.mtmt.hu/api/publication/3102549}, author = {Czampa, Miklós and Biró, István and Szalay, Tibor}, doi = {10.1007/s00170-016-9313-x}, journal-iso = {INT J ADV MANUFACT TECHNOL}, journal = {INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY}, volume = {89}, unique-id = {3102549}, issn = {0268-3768}, abstract = {Parts made by powder metallurgy generally do not require subsequent machining operations. However, further machining of these sintered parts cannot be avoided in case of special, complex geometries. The goal of the research discussed in this paper is to create an easy-to-use, time-efficient and cost-efficient method to describe the secondary machining properties of iron-based, copper-containing and carbon-containing powder metallurgy steels (PMSs) in terms of the energy indicators. In order to compare the machinability of PMSs with different compositions, a new test method was developed. Considering the high importance of the turning process in the manufacturing of PMS parts, a short axial grooving test was developed. Cutting force measurements were carried out where the characteristics of the measured signal referred to the machinability of the tested materials. This newly developed test can be carried out quickly, and it can successfully be applied to characterize the energetics of PMS machining. Based on the test results, appropriate alloying element percentages could be determined.}, keywords = {Signal processing; Metal matrix composites; Machinability evaluation; Cutting force measurement}, year = {2017}, eissn = {1433-3015}, pages = {3495-3507}, orcid-numbers = {Czampa, Miklós/0000-0003-0349-5152; Biró, István/0000-0002-5616-0973; Szalay, Tibor/0000-0003-3446-2898} } @article{MTMT:3266504, title = {Application of a Force Model Adapted for the Precise Turning of Various Metallic Materials}, url = {https://m2.mtmt.hu/api/publication/3266504}, author = {Horváth, Richárd and Lukács, Judit}, doi = {10.5545/sv-jme.2017.4430}, journal-iso = {STROJ VESTN-J MECH E}, journal = {STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING}, volume = {63}, unique-id = {3266504}, issn = {0039-2480}, year = {2017}, eissn = {2536-3948}, pages = {489-500} } @article{MTMT:3023123, title = {Validation of Cutting Force Characteristic for Complex Toolpath}, url = {https://m2.mtmt.hu/api/publication/3023123}, isbn = {9788001058855}, author = {Sykora, Henrik Tamás and Kovács, Attila and Bachrathy, Dániel}, doi = {10.14311/APP.2016.3.0078}, journal-iso = {ACTA POLYTECH CTU PROC}, journal = {ACTA POLYTECHNICA CTU PROCEEDINGS}, volume = {3}, unique-id = {3023123}, year = {2016}, eissn = {2336-5382}, pages = {78-81}, orcid-numbers = {Sykora, Henrik Tamás/0000-0003-1034-4387; Bachrathy, Dániel/0000-0003-1491-1852} } @article{MTMT:3033992, title = {Possibility to increase the life time of surfaces on parts by the use of diamond burnishing process}, url = {https://m2.mtmt.hu/api/publication/3033992}, author = {Varga, Gyula}, doi = {10.4028/www.scientific.net/KEM.686.100}, journal-iso = {KEY ENG MATER}, journal = {KEY ENGINEERING MATERIALS}, volume = {686}, unique-id = {3033992}, issn = {1013-9826}, year = {2016}, eissn = {1662-9795}, pages = {100-107}, orcid-numbers = {Varga, Gyula/0000-0002-1956-790X} } @article{MTMT:25127066, title = {Geometrical model for rectangular-inserted face milling of surfaces with parabolic cross-sections in parallel direction with machining feed}, url = {https://m2.mtmt.hu/api/publication/25127066}, author = {I, Lirabi and H, Amirabadi}, journal-iso = {MODARES MECHANICAL ENGINEERING}, journal = {MUNANDISI I MIKANIK I MUDARRIS / MODARES MECHANICAL ENGINEERING}, volume = {15}, unique-id = {25127066}, issn = {1027-5940}, year = {2015}, eissn = {2476-6909}, pages = {176-181} }