TY - JOUR AU - Paulk, Angelique C AU - Yang, Jimmy C AU - Cleary, Daniel R AU - Soper, Daniel J AU - Halgren, Milan AU - O’Donnell, Alexandra R AU - Lee, Sang Heon AU - Ganji, Mehran AU - Ro, Yun Goo AU - Oh, Hongseok AU - Hossain, Lorraine AU - Lee, Jihwan AU - Tchoe, Youngbin AU - Rogers, Nicholas AU - Kiliç, Kivilcim AU - Ryu, Sang Baek AU - Lee, Seung Woo AU - Hermiz, John AU - Gilja, Vikash AU - Ulbert, István AU - Fabó, Dániel AU - Thesen, Thomas AU - Doyle, Werner K AU - Devinsky, Orrin AU - Madsen, Joseph R AU - Schomer, Donald L AU - Eskandar, Emad N AU - Lee, Jong Woo AU - Maus, Douglas AU - Devor, Anna AU - Fried, Shelley I AU - Jones, Pamela S AU - Nahed, Brian V AU - Ben-Haim, Sharona AU - Bick, Sarah K AU - Richardson, Robert Mark AU - Raslan, Ahmed M AU - Siler, Dominic A AU - Cahill, Daniel P AU - Williams, Ziv M AU - Cosgrove, G Rees AU - Dayeh, Shadi A AU - Cash, Sydney S TI - Microscale Physiological Events on the Human Cortical Surface JF - CEREBRAL CORTEX J2 - CEREB CORTEX VL - 31 PY - 2021 IS - 8 SP - 3678 EP - 3700 PG - 23 SN - 1047-3211 DO - 10.1093/cercor/bhab040 UR - https://m2.mtmt.hu/api/publication/31933662 ID - 31933662 N1 - Funding Agency and Grant Number: Defense Advanced Research Projects Agency [W911NF14-2-0045]; National Institutes of Health [1F32MH120886]; ECOR; Tiny Blue Dot Foundation; NSF-CAREER [1351980]; NSF CMMI [1728497]; NSF-ECCS EAGER [1743694]; BRAIN Initiative [R01MH111359]; NIH [NEI R01-EY029022/EY023651, NINDS U01-NS099700, DP2-EB029757]; Dept. of Defense/CDMRP [VR170089]; Hungarian Brain Research Program [2017-1.2.1-NKP-2017-00002]; U.S. Army Research Office [W911NF14-2-0045]; [K24-NS088568] Funding text: The U.S. Army Research Office and Defense Advanced Research Projects Agency (Cooperative Agreement Number W911NF14-2-0045); National Institutes of Health (Award Number 1F32MH120886) to D.R.C.; ECOR and K24-NS088568 to S.S.C.; Tiny Blue Dot Foundation (to S.S.C. and A.C.P.); and by an NSF-CAREER (award #1351980), NSF CMMI (award #1728497), an NSF-ECCS EAGER (award #1743694), and an NIH (award #DP2-EB029757) to S.A.D.; BRAIN Initiative (R01MH111359 to A.D.); and NIH (NEI R01-EY029022/EY023651 and NINDS U01-NS099700); the Dept. of Defense/CDMRP (VR170089) to S.B.R., S.W.L., and S.I.F.; the Hungarian Brain Research Program(2017-1.2.1-NKP-2017-00002) to I.U. LA - English DB - MTMT ER - TY - JOUR AU - Keller, CJ AU - Honey, CJ AU - Entz, László AU - Bickel, S AU - Groppe, DM AU - Tóth, Emília AU - Ulbert, István AU - Lado, FA AU - Mehta, AD TI - Corticocortical evoked potentials reveal projectors and integrators in human brain networks. JF - JOURNAL OF NEUROSCIENCE J2 - J NEUROSCI VL - 34 PY - 2014 IS - 27 SP - 9152 EP - 9163 PG - 12 SN - 0270-6474 DO - 10.1523/JNEUROSCI.4289-13.2014 UR - https://m2.mtmt.hu/api/publication/2716516 ID - 2716516 N1 - Megjegyzés-24082983 N1 Funding Details: F31NS080357-01, NINDS, National Institute of Neurological Disorders and Stroke N1 Funding Details: T32-GM007288, NINDS, National Institute of Neurological Disorders and Stroke AB - The cerebral cortex is composed of subregions whose functional specialization is largely determined by their incoming and outgoing connections with each other. In the present study, we asked which cortical regions can exert the greatest influence over other regions and the cortical network as a whole. Previous research on this question has relied on coarse anatomy (mapping large fiber pathways) or functional connectivity (mapping inter-regional statistical dependencies in ongoing activity). Here we combined direct electrical stimulation with recordings from the cortical surface to provide a novel insight into directed, inter- regional influence within the cerebral cortex of awake humans. These networks of directed interaction were reproducible across strength thresholds and across subjects. Directed network properties included (1) a decrease in the reciprocity of connections with distance; (2) major projector nodes (sources of influence) were found in peri-Rolandic cortex and posterior, basal and polar regions of the temporal lobe; and (3) major receiver nodes (receivers of influence) were found in anterolateral frontal, superior parietal, and superior temporal regions. Connectivity maps derived from electrical stimulation and from resting electrocorticography (ECoG) correlations showed similar spatial distributions for the same source node. However, higher-level network topology analysis revealed differences between electrical stimulation and ECoG that were partially related to the reciprocity of connections. Together, these findings inform our understanding of large-scale corticocortical influence as well as the interpretation of functional connectivity networks. LA - English DB - MTMT ER -