TY - JOUR AU - Szemerédi, Endre TI - Integer Sets Containing NO Arithmetic Progressions JF - ACTA MATHEMATICA HUNGARICA J2 - ACTA MATH HUNG VL - 56 PY - 1990 IS - 1-2 SP - 155 EP - 158 PG - 4 SN - 0236-5294 DO - 10.1007/BF01903717 UR - https://m2.mtmt.hu/api/publication/1093740 ID - 1093740 LA - English DB - MTMT ER - TY - JOUR AU - Frankl, Péter AU - Graham, RL AU - Rödl, V TI - On subsets of abelian groups with no 3-term arithmetic progression JF - JOURNAL OF COMBINATORIAL THEORY SERIES A J2 - J COMB THEORY A VL - 45 PY - 1987 IS - 1 SP - 157 EP - 161 PG - 5 SN - 0097-3165 DO - 10.1016/0097-3165(87)90053-7 UR - https://m2.mtmt.hu/api/publication/2189231 ID - 2189231 N1 - Cited By :32 Export Date: 29 February 2024 CODEN: JCBTA Correspondence Address: Frankl, P.; C.N.R.S., Paris, France AB - A short proof of the following result of Brown and Buhler is given: For any ε{lunate} > 0 there exists n0 = n0(ε{lunate}) such that if A is an abelian group of odd order |A| > n0 and B ⊆ A with |B| > ε{lunate}|A|, then B must contain three distinct elements x, y, z satisfying x + y = 2z. © 1987. LA - English DB - MTMT ER -