@article{MTMT:1093740, title = {Integer Sets Containing NO Arithmetic Progressions}, url = {https://m2.mtmt.hu/api/publication/1093740}, author = {Szemerédi, Endre}, doi = {10.1007/BF01903717}, journal-iso = {ACTA MATH HUNG}, journal = {ACTA MATHEMATICA HUNGARICA}, volume = {56}, unique-id = {1093740}, issn = {0236-5294}, year = {1990}, eissn = {1588-2632}, pages = {155-158} } @article{MTMT:2189231, title = {On subsets of abelian groups with no 3-term arithmetic progression}, url = {https://m2.mtmt.hu/api/publication/2189231}, author = {Frankl, Péter and Graham, RL and Rödl, V}, doi = {10.1016/0097-3165(87)90053-7}, journal-iso = {J COMB THEORY A}, journal = {JOURNAL OF COMBINATORIAL THEORY SERIES A}, volume = {45}, unique-id = {2189231}, issn = {0097-3165}, abstract = {A short proof of the following result of Brown and Buhler is given: For any ε{lunate} > 0 there exists n0 = n0(ε{lunate}) such that if A is an abelian group of odd order |A| > n0 and B ⊆ A with |B| > ε{lunate}|A|, then B must contain three distinct elements x, y, z satisfying x + y = 2z. © 1987.}, year = {1987}, eissn = {1096-0899}, pages = {157-161} }