@article{MTMT:3312483, title = {Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells}, url = {https://m2.mtmt.hu/api/publication/3312483}, author = {Chandrasekaran, A and Avci, HX and Ochalek, A and Rosingh, LN and Molnár, Kinga and László, Lajos and Bellák, Tamás and Teglasi, A and Pesti, Krisztina and Mike, Árpád and Phanthong, P and Biró, Orsolya and Hall, V and Kitiyanant, N and Krause, KH and Kobolák, Julianna and Dinnyés, András}, doi = {10.1016/j.scr.2017.10.010}, journal-iso = {STEM CELL RES}, journal = {STEM CELL RESEARCH}, volume = {25}, unique-id = {3312483}, issn = {1873-5061}, abstract = {Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6(+)/NESTIN(+) cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background.}, year = {2017}, eissn = {1876-7753}, pages = {139-151}, orcid-numbers = {Molnár, Kinga/0000-0002-7196-5331; László, Lajos/0000-0002-2114-9109; Mike, Árpád/0000-0002-9095-8161; Biró, Orsolya/0000-0002-4300-3602; Kobolák, Julianna/0000-0002-0986-9517} } @article{MTMT:3253813, title = {Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism}, url = {https://m2.mtmt.hu/api/publication/3253813}, author = {Nagy, József and Kobolák, Julianna and Berzsenyi, Sára and Ábrahám, Z and Avci, XH and Bock, István and Bekes, Z and Hodoscsek, B and Chandrasekaran, Abinaya and Téglási, A and Dezső, Péter and Koványi, Bence and T, Vörös E and Fodor, L and Szél, T and Németh, K and Balázs, A and Dinnyés, András and Lendvai, Balázs and Lévay, György István and Román, Viktor}, doi = {10.1038/tp.2017.144}, journal-iso = {TRANSL PSYCHIAT}, journal = {TRANSLATIONAL PSYCHIATRY}, volume = {7}, unique-id = {3253813}, issn = {2158-3188}, year = {2017}, eissn = {2158-3188}, orcid-numbers = {Kobolák, Julianna/0000-0002-0986-9517} }