TY - JOUR AU - Anderl, I AU - Vesala, L AU - Ihalainen, TO AU - Vanha-Aho, LM AU - Andó, István AU - Ramet, M AU - Hultmark, D TI - Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. JF - PLOS PATHOGENS J2 - PLOS PATHOG VL - 12 PY - 2016 IS - 7 SP - e1005746 SN - 1553-7366 DO - 10.1371/journal.ppat.1005746 UR - https://m2.mtmt.hu/api/publication/3096913 ID - 3096913 N1 - WoS:hiba:000383366400030 2019-03-03 19:41 első oldal nem egyezik AB - Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail. LA - English DB - MTMT ER - TY - JOUR AU - Honti, Viktor AU - Csordás, Gábor AU - Kurucz, Judit Éva AU - Márkus, Róbert AU - Andó, István TI - The cell-mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation. JF - DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY J2 - DEV COMP IMMUNOL VL - 42 PY - 2014 IS - 1 SP - 47 EP - 56 PG - 10 SN - 0145-305X DO - 10.1016/j.dci.2013.06.005 UR - https://m2.mtmt.hu/api/publication/2372553 ID - 2372553 N1 - Cited By :124 Export Date: 19 January 2022 CODEN: DCIMD Correspondence Address: Andó, I.; Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary; email: ando.istvan@brc.mta.hu AB - In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. LA - English DB - MTMT ER - TY - JOUR AU - Márkus, Róbert AU - Laurinyecz, Barbara AU - Kurucz, Judit Éva AU - Honti, Viktor AU - Bajusz, Izabella AU - Sipos, Botond AU - Somogyi, Kálmán AU - Kronhamn, J AU - Hultmark, D AU - Andó, István TI - Sessile hemocytes as a hematopoietic compartment in drosophila melanogaster JF - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA J2 - P NATL ACAD SCI USA VL - 106 PY - 2009 IS - 12 SP - 4805 EP - 4809 PG - 5 SN - 0027-8424 DO - 10.1073/pnas.0801766106 UR - https://m2.mtmt.hu/api/publication/1920757 ID - 1920757 N1 - Cited By :174 Export Date: 30 June 2022 CODEN: PNASA LA - English DB - MTMT ER - TY - JOUR AU - Kurucz, Judit Éva AU - Váczi, Balázs AU - Márkus, Róbert AU - Laurinyecz, Barbara AU - Vilmos, Péter AU - Zsámboki, János AU - Csorba, Kinga AU - Gateff, E AU - Hultmark, D AU - Andó, István TI - Definition of Drosophila hemocyte subsets by cell-type specific antigens JF - ACTA BIOLOGICA HUNGARICA (1983-2018) J2 - ACTA BIOL HUNG VL - 58 PY - 2007 IS - Suppl. 1 SP - 95 EP - 111 PG - 17 SN - 0236-5383 DO - 10.1556/ABiol.58.2007.Suppl.8 UR - https://m2.mtmt.hu/api/publication/1915261 ID - 1915261 AB - We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. Oil the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmalocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged ill four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocyles. LA - English DB - MTMT ER -