TY - JOUR AU - Anderl, I AU - Vesala, L AU - Ihalainen, TO AU - Vanha-Aho, LM AU - Andó, István AU - Ramet, M AU - Hultmark, D TI - Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection. JF - PLOS PATHOGENS J2 - PLOS PATHOG VL - 12 PY - 2016 IS - 7 SP - e1005746 SN - 1553-7366 DO - 10.1371/journal.ppat.1005746 UR - https://m2.mtmt.hu/api/publication/3096913 ID - 3096913 N1 - WoS:hiba:000383366400030 2019-03-03 19:41 első oldal nem egyezik AB - Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail. LA - English DB - MTMT ER - TY - JOUR AU - Márkus, Róbert AU - Lerner, Zita AU - Honti, Viktor AU - Csordás, Gábor AU - Zsámboki, János AU - Cinege, Gyöngyi Ilona AU - Párducz, Árpád AU - Lukacsovich, Tamás AU - Kurucz, Judit Éva AU - Andó, István TI - Multinucleated Giant Hemocytes Are Effector Cells in Cell-Mediated Immune Responses of Drosophila JF - JOURNAL OF INNATE IMMUNITY J2 - J INNATE IMMUN VL - 7 PY - 2015 IS - 4 SP - 340 EP - 353 PG - 14 SN - 1662-811X DO - 10.1159/000369618 UR - https://m2.mtmt.hu/api/publication/2853634 ID - 2853634 N1 - Megjegyzés-25258522 Hiányzó Jelleg: 'JOUR\n\nArticle' Admin megjegyzés-25258522 tblcategory: (Category) ('JOUR\n\nArticle') #Jelleg AB - We identified and characterized a so far unrecognized cell type, dubbed the multinucleated giant hemocyte (MGH), in the ananassae subgroup of Drosophilidae. Here, we describe the functional and ultrastructural characteristics of this novel blood cell type as well as its characterization with a set of discriminative immunological markers. MGHs are encapsulating cells that isolate and kill the parasite without melanization. They share some properties with but differ considerably from lamellocytes, the encapsulating cells of Drosophila melanogaster, the broadly used model organism in studies of innate immunity. MGHs are nonproliferative effector cells that are derived from phagocytic cells of the sessile tissue and the circulation, but do not exhibit phagocytic activity. In contrast to lamellocytes, MGHs are gigantic cells with filamentous projections and contain many nuclei, which are the result of the fusion of several cells. Although the structure of lamellocytes and MGHs differ remarkably, their function in the elimination of parasites is similar, which is potentially the result of the convergent evolution of interactions between hosts and parasites in different geographic regions. MGHs are highly motile and share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation. © 2015 S. Karger AG, Basel LA - English DB - MTMT ER - TY - JOUR AU - Honti, Viktor AU - Csordás, Gábor AU - Kurucz, Judit Éva AU - Márkus, Róbert AU - Andó, István TI - The cell-mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation. JF - DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY J2 - DEV COMP IMMUNOL VL - 42 PY - 2014 IS - 1 SP - 47 EP - 56 PG - 10 SN - 0145-305X DO - 10.1016/j.dci.2013.06.005 UR - https://m2.mtmt.hu/api/publication/2372553 ID - 2372553 N1 - Cited By :124 Export Date: 19 January 2022 CODEN: DCIMD Correspondence Address: Andó, I.; Institute of Genetics Biological Research Centre of the Hungarian Academy of Sciences, P.O. Box 521, Szeged H-6701, Hungary; email: ando.istvan@brc.mta.hu AB - In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. LA - English DB - MTMT ER - TY - JOUR AU - Honti, Viktor AU - Csordás, Gábor AU - Márkus, Róbert AU - Kurucz, Judit Éva AU - Jankovics, Ferenc AU - Andó, István TI - Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in drosophila melanogaster JF - MOLECULAR IMMUNOLOGY J2 - MOL IMMUNOL VL - 47 PY - 2010 IS - 11-12 SP - 1997 EP - 2004 PG - 8 SN - 0161-5890 DO - 10.1016/j.molimm.2010.04.017 UR - https://m2.mtmt.hu/api/publication/1921048 ID - 1921048 N1 - Cited By :83 Export Date: 19 January 2022 CODEN: IMCHA Correspondence Address: Andó, I.; Institute of Genetics, Temesvári krt. 62, 6726 Szeged, Csongrád, Hungary; email: ando@brc.hu LA - English DB - MTMT ER - TY - JOUR AU - Márkus, Róbert AU - Laurinyecz, Barbara AU - Kurucz, Judit Éva AU - Honti, Viktor AU - Bajusz, Izabella AU - Sipos, Botond AU - Somogyi, Kálmán AU - Kronhamn, J AU - Hultmark, D AU - Andó, István TI - Sessile hemocytes as a hematopoietic compartment in drosophila melanogaster JF - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA J2 - P NATL ACAD SCI USA VL - 106 PY - 2009 IS - 12 SP - 4805 EP - 4809 PG - 5 SN - 0027-8424 DO - 10.1073/pnas.0801766106 UR - https://m2.mtmt.hu/api/publication/1920757 ID - 1920757 N1 - Cited By :174 Export Date: 30 June 2022 CODEN: PNASA LA - English DB - MTMT ER - TY - JOUR AU - Kurucz, Judit Éva AU - Váczi, Balázs AU - Márkus, Róbert AU - Laurinyecz, Barbara AU - Vilmos, Péter AU - Zsámboki, János AU - Csorba, Kinga AU - Gateff, E AU - Hultmark, D AU - Andó, István TI - Definition of Drosophila hemocyte subsets by cell-type specific antigens JF - ACTA BIOLOGICA HUNGARICA (1983-2018) J2 - ACTA BIOL HUNG VL - 58 PY - 2007 IS - Suppl. 1 SP - 95 EP - 111 PG - 17 SN - 0236-5383 DO - 10.1556/ABiol.58.2007.Suppl.8 UR - https://m2.mtmt.hu/api/publication/1915261 ID - 1915261 AB - We analyzed the heterogeneity of Drosophila hemocytes on the basis of the expression of cell-type specific antigens. The antigens characterize distinct subsets which partially overlap with those defined by morphological criteria. Oil the basis of the expression or the lack of expression of blood cell antigens the following hemocyte populations have been defined: crystal cells, plasmalocytes, lamellocytes and precursor cells. The expression of the antigens and thus the different cell types are developmentally regulated. The hemocytes are arranged ill four main compartments: the circulating blood cells, the sessile tissue, the lymph glands and the posterior hematopoietic tissue. Each hemocyte compartment has a specific and characteristic composition of the various cell types. The described markers represent the first successful attempt to define hemocyte lineages by immunological markers in Drosophila and help to define morphologically, functionally, spatially and developmentally distinct subsets of hemocyles. LA - English DB - MTMT ER - TY - JOUR AU - Williams, MJ AU - Andó, István AU - Hultmark, D TI - Drosophila melanogaster Rac2 is necessary for a proper cellular immune response JF - GENES TO CELLS J2 - GENES CELLS VL - 10 PY - 2005 SP - 813 EP - 823 PG - 11 SN - 1356-9597 DO - 10.1111/j.1365-2443.2005.00883.x UR - https://m2.mtmt.hu/api/publication/1913913 ID - 1913913 LA - English DB - MTMT ER - TY - JOUR AU - Zettervall, CJ AU - Anderl, I AU - Williams, MJ AU - Palmer, R AU - Kurucz, Judit Éva AU - Andó, István AU - Hultmark, D TI - A directed screen for genes involved in Drosophila blood cell activation JF - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA J2 - P NATL ACAD SCI USA VL - 101 PY - 2004 IS - 39 SP - 14192 EP - 14197 PG - 6 SN - 0027-8424 DO - 10.1073/pnas.0403789101 UR - https://m2.mtmt.hu/api/publication/1913536 ID - 1913536 LA - English DB - MTMT ER -