@article{MTMT:3312483, title = {Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells}, url = {https://m2.mtmt.hu/api/publication/3312483}, author = {Chandrasekaran, A and Avci, HX and Ochalek, A and Rosingh, LN and Molnár, Kinga and László, Lajos and Bellák, Tamás and Teglasi, A and Pesti, Krisztina and Mike, Árpád and Phanthong, P and Biró, Orsolya and Hall, V and Kitiyanant, N and Krause, KH and Kobolák, Julianna and Dinnyés, András}, doi = {10.1016/j.scr.2017.10.010}, journal-iso = {STEM CELL RES}, journal = {STEM CELL RESEARCH}, volume = {25}, unique-id = {3312483}, issn = {1873-5061}, abstract = {Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6(+)/NESTIN(+) cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background.}, year = {2017}, eissn = {1876-7753}, pages = {139-151}, orcid-numbers = {Molnár, Kinga/0000-0002-7196-5331; László, Lajos/0000-0002-2114-9109; Mike, Árpád/0000-0002-9095-8161; Biró, Orsolya/0000-0002-4300-3602; Kobolák, Julianna/0000-0002-0986-9517} } @article{MTMT:2959993, title = {Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons}, url = {https://m2.mtmt.hu/api/publication/2959993}, author = {Salewski, RP and Mitchell, RA and Li, L and Shen, C and Milekovskaia, M and Nagy, András and Fehlings, MG}, doi = {10.5966/sctm.2014-0236}, journal-iso = {STEM CELL TRANSL MED}, journal = {STEM CELLS TRANSLATIONAL MEDICINE}, volume = {4}, unique-id = {2959993}, issn = {2157-6564}, year = {2015}, eissn = {2157-6580}, pages = {743-754} } @article{MTMT:2941282, title = {The Generation of Definitive Neural Stem Cells from PiggyBac Transposon-Induced Pluripotent Stem Cells Can Be Enhanced by Induction of the NOTCH Signaling Pathway}, url = {https://m2.mtmt.hu/api/publication/2941282}, author = {Salewski, RP and Buttigieg, J and Mitchell, RA and van der Kooy, D and Nagy, András and Fehlings, MG}, doi = {10.1089/scd.2012.0218}, journal-iso = {STEM CELLS DEV}, journal = {STEM CELLS AND DEVELOPMENT}, volume = {22}, unique-id = {2941282}, issn = {1547-3287}, abstract = {Cell-based therapies using neural stem cells (NSCs) have shown positive outcomes in various models of neurological injury and disease. Induced pluripotent stem cells (iPSCs) address many problems associated with NSCs from various sources, including the immune response and cell availability. However, due to inherent differences between embryonic stem cells (ESCs) and iPSCs, detailed characterization of the iPS-derived NSCs will be required before translational experiments can be performed. Murine piggyBac transposon iPSCs were clonally expanded in floating sphere colonies to generate primitive NSCs initially with serum-free media (SFM) containing the leukemia inhibitory factor and followed by SFM with the fibroblast growth factor-2 (FGF2) to form colonies of definitive NSCs (dNSCs). Primitive and definitive clonally derived neurospheres were successfully generated using the default conditions from iPSCs and ESCs. However, the iPSC-dNSCs expressed significantly higher levels of pluripotency and nonectoderm lineage genes compared to equivalent ESC-dNSCs. The addition of the bone morphogenetic proteins antagonist, Noggin, to the media significantly increased primary neurosphere generation from the iPSC lines, but did not affect the dNSC sphere colonies generated. The induction of the NOTCH pathway by the Delta-like ligand 4 (DLL4) improved the generation and quality of dNSCs, as demonstrated by a reduction in pluripotency and nonectodermal markers, while maintaining NSC-specific gene expression. The iPS-dNSCs (+ DLL4) showed functional neural differentiation by immuncytochemical staining and electrophysiology. This study suggests the intrinsic differences between ESCs and iPSCs in their ability to acquire a dNSC fate that can be overcome by inducing the NOTCH pathway.}, keywords = {EXPRESSION; IN-VITRO; DIFFERENTIATION; GENES; CENTRAL-NERVOUS-SYSTEM; PROLIFERATION; SPINAL-CORD-INJURY; PRECURSOR CELLS; PROMOTES; DEFAULT MECHANISM}, year = {2013}, eissn = {1557-8534}, pages = {383-396} }