@article{MTMT:3152197, title = {Identifying miRNA regulatory mechanisms in preeclampsia by systems biology approaches}, url = {https://m2.mtmt.hu/api/publication/3152197}, author = {Biró, Orsolya and Nagy, Bálint and Rigó, János}, doi = {10.1080/10641955.2016.1239736}, journal-iso = {HYPERT PREGN}, journal = {HYPERTENSION IN PREGNANCY}, volume = {36}, unique-id = {3152197}, issn = {1064-1955}, abstract = {BACKGROUND: Preeclampsia (PE) is the major cause of maternal and fetal morbidity and mortality, affecting 3-8% of all pregnancies around the globe. miRNAs are small, noncoding RNA molecules, which negatively regulate gene expression. Abnormally expressed miRNAs contribute to pregnancy complications such as PE. The aim of our study was to find possible regulatory mechanisms by system biology approaches, which are connected to the pathogenesis of PE. METHODS: We integrated publicly available miRNA and gene expression profiles and created a network from the significant miRNA-mRNA pairs with the help of MAGIA and Cytoscape softwares. Two subnetworks were expanded by adding protein-protein interactions. Differentially expressed miRNAs were identified for the evaluation of their regulatory effect. We analyzed the miRNAs and their targets using different bioinformatics tools and through literature research. RESULTS: Altogether, 52,603 miRNA-mRNA interactions were generated by the MAGIA web tool. The top 250 interactions were visualized and pairs with q < 0.0001 were analyzed, which included 85 nodes and 80 edges signalizing the connections between 52 regulated genes and 33 miRNAs. A total of 11 of the regulated genes are PE related and 9 of them were targeted by multiple miRNAs. A total of 8 miRNAs were associated with PE before, and 13 miRNAs regulated more than 1 mRNA. Hsa-mir-210 was the highest degree node in the network and its role in PE is well established. CONCLUSIONS: We identified several miRNA-mRNA regulatory mechanisms which may contribute to the pathogenesis of PE. Further investigations are needed to validate these miRNA-mRNA interactions and to enlighten the possibilities of developing potential therapeutic targets.}, year = {2017}, eissn = {1525-6065}, pages = {90-99}, orcid-numbers = {Biró, Orsolya/0000-0002-4300-3602; Nagy, Bálint/0000-0002-0295-185X; Rigó, János/0000-0003-2762-6516} } @article{MTMT:32552930, title = {Worldwide trends in blood pressure from 1975 to 2015. a pooled analysis of 1479 population-based measurement studies with 19·1 million participants.}, url = {https://m2.mtmt.hu/api/publication/32552930}, doi = {10.1016/S0140-6736(16)31919-5}, journal-iso = {LANCET}, journal = {LANCET}, volume = {389}, unique-id = {32552930}, issn = {0140-6736}, abstract = {Raised blood pressure is an important risk factor for cardiovascular diseases and chronic kidney disease. We estimated worldwide trends in mean systolic and mean diastolic blood pressure, and the prevalence of, and number of people with, raised blood pressure, defined as systolic blood pressure of 140 mm Hg or higher or diastolic blood pressure of 90 mm Hg or higher.For this analysis, we pooled national, subnational, or community population-based studies that had measured blood pressure in adults aged 18 years and older. We used a Bayesian hierarchical model to estimate trends from 1975 to 2015 in mean systolic and mean diastolic blood pressure, and the prevalence of raised blood pressure for 200 countries. We calculated the contributions of changes in prevalence versus population growth and ageing to the increase in the number of adults with raised blood pressure.We pooled 1479 studies that had measured the blood pressures of 19·1 million adults. Global age-standardised mean systolic blood pressure in 2015 was 127·0 mm Hg (95% credible interval 125·7-128·3) in men and 122·3 mm Hg (121·0-123·6) in women; age-standardised mean diastolic blood pressure was 78·7 mm Hg (77·9-79·5) for men and 76·7 mm Hg (75·9-77·6) for women. Global age-standardised prevalence of raised blood pressure was 24·1% (21·4-27·1) in men and 20·1% (17·8-22·5) in women in 2015. Mean systolic and mean diastolic blood pressure decreased substantially from 1975 to 2015 in high-income western and Asia Pacific countries, moving these countries from having some of the highest worldwide blood pressure in 1975 to the lowest in 2015. Mean blood pressure also decreased in women in central and eastern Europe, Latin America and the Caribbean, and, more recently, central Asia, Middle East, and north Africa, but the estimated trends in these super-regions had larger uncertainty than in high-income super-regions. By contrast, mean blood pressure might have increased in east and southeast Asia, south Asia, Oceania, and sub-Saharan Africa. In 2015, central and eastern Europe, sub-Saharan Africa, and south Asia had the highest blood pressure levels. Prevalence of raised blood pressure decreased in high-income and some middle-income countries; it remained unchanged elsewhere. The number of adults with raised blood pressure increased from 594 million in 1975 to 1·13 billion in 2015, with the increase largely in low-income and middle-income countries. The global increase in the number of adults with raised blood pressure is a net effect of increase due to population growth and ageing, and decrease due to declining age-specific prevalence.During the past four decades, the highest worldwide blood pressure levels have shifted from high-income countries to low-income countries in south Asia and sub-Saharan Africa due to opposite trends, while blood pressure has been persistently high in central and eastern Europe.Wellcome Trust.}, year = {2017}, eissn = {1474-547X}, pages = {37-55}, orcid-numbers = {Molnár, Dénes/0000-0002-3675-7019; Ostojic, Sergej/0000-0002-7270-2541} }