@article{MTMT:2459240, title = {Foldameric α/β-Peptide Analogs of the β-Sheet-Forming Antiangiogenic Anginex: Structure and Bioactivity}, url = {https://m2.mtmt.hu/api/publication/2459240}, author = {Hegedüs, Zsófia and Wéber, Edit and Kriston-Pál, Éva and Makra, Ildikó and Czibula, Ágnes and Monostori, Éva and Martinek, Tamás}, doi = {10.1021/ja408054f}, journal-iso = {J AM CHEM SOC}, journal = {JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, volume = {135}, unique-id = {2459240}, issn = {0002-7863}, abstract = {The principles of beta-sheet folding and design for alpha-peptidic sequences are well established, while those for sheet mimetics containing homologated amino acid building blocks are still under investigation. To reveal the structure-function relations of beta-amino-acid-containing foldamers, we followed a top-down approach to study a series of alpha/beta-peptidic analogs of anginex, a beta-sheet-forming antiangiogenic peptide. Eight anginex analogs were developed by systematic alpha --> beta(3) substitutions and analyzed by using NMR and CD spectroscopy. The foldamers retained the beta-sheet tendency, though with a decreased folding propensity. beta-Sheet formation could be induced by a micellar environment, similarly to that of the parent peptide. The destructuring effect was higher when the alpha --> beta(3) exchange was located in the beta-sheet core. Analysis of the beta-sheet stability versus substitution pattern and the local conformational bias of the bulky beta(3)V and beta(3)I residues revealed that a mismatch between the H-bonding preferences of the alpha- and beta-residues played a minor role in the structure-breaking effect. Temperature-dependent CD and NMR measurements showed that the hydrophobic stabilization was scaled-down for the alpha/beta-peptides. Analysis of the biological activity of the foldamer peptides showed that four anginex derivatives dose-dependently inhibited the proliferation of a mouse endothelial cell line. The alpha --> beta(3) substitution strategy applied in this work can be a useful approach to the construction of bioactive beta-sheet mimetics with a reduced aggregation tendency and improved pharmacokinetic properties.}, year = {2013}, eissn = {1520-5126}, pages = {16578-16584}, orcid-numbers = {Hegedüs, Zsófia/0000-0002-5546-8167; Wéber, Edit/0000-0002-5904-0619; Czibula, Ágnes/0000-0003-4461-2773; Monostori, Éva/0000-0002-7442-3562; Martinek, Tamás/0000-0003-3168-8066} } @article{MTMT:1842290, title = {Peptidic foldamers: ramping up diversity}, url = {https://m2.mtmt.hu/api/publication/1842290}, author = {Martinek, Tamás and Fülöp, Ferenc}, doi = {10.1039/c1cs15097a}, journal-iso = {CHEM SOC REV}, journal = {CHEMICAL SOCIETY REVIEWS}, volume = {41}, unique-id = {1842290}, issn = {0306-0012}, abstract = {Non-natural folded polymers (foldamers) display considerable versatility, and the design of such molecules is of great current interest. In this respect, peptidic foldamers are perhaps the best-characterized systems, as they populate a number of residue-controlled secondary structures, which have found various biological applications and have also led to the creation of nanostructured materials. This critical review covers recent developments related to diverse building blocks and modern foldamer design principles, such as the stereochemical patterning methods. The recent achievements concerning tertiary/quaternary structures and the self-assembling foldameric nanostructures are also addressed (176 references).}, keywords = {DE-NOVO DESIGN; BETA-AMINO ACIDS; PROTEINOGENIC SIDE-CHAINS; MODEL SYNTHETIC FOLDAMERS; GCN4 LEUCINE-ZIPPER; HYDROGEN-BONDED RINGS; PARALLEL SHEET STRUCTURE; MIXED ALPHA/BETA-PEPTIDES; HELICAL SECONDARY STRUCTURES; EFFECTIVE SIMULATION PROTOCOLS}, year = {2012}, eissn = {1460-4744}, pages = {687-702}, orcid-numbers = {Martinek, Tamás/0000-0003-3168-8066; Fülöp, Ferenc/0000-0003-1066-5287} }