TY - JOUR AU - Serban, Norbert AU - Kupás, Dávid AU - Hajdu, András AU - Török, Péter AU - Harangi, Balázs TI - Distinguishing the Uterine Artery, the Ureter, and Nerves in Laparoscopic Surgical Images Using Ensembles of Binary Semantic Segmentation Networks JF - SENSORS J2 - SENSORS-BASEL VL - 24 PY - 2024 IS - 9 SP - 1 EP - 12 PG - 12 SN - 1424-8220 DO - 10.3390/s24092926 UR - https://m2.mtmt.hu/api/publication/34850523 ID - 34850523 AB - Performing a minimally invasive surgery comes with a significant advantage regarding rehabilitating the patient after the operation. But it also causes difficulties, mainly for the surgeon or expert who performs the surgical intervention, since only visual information is available and they cannot use their tactile senses during keyhole surgeries. This is the case with laparoscopic hysterectomy since some organs are also difficult to distinguish based on visual information, making laparoscope-based hysterectomy challenging. In this paper, we propose a solution based on semantic segmentation, which can create pixel-accurate predictions of surgical images and differentiate the uterine arteries, ureters, and nerves. We trained three binary semantic segmentation models based on the U-Net architecture with the EfficientNet-b3 encoder; then, we developed two ensemble techniques that enhanced the segmentation performance. Our pixel-wise ensemble examines the segmentation map of the binary networks on the lowest level of pixels. The other algorithm developed is a region-based ensemble technique that takes this examination to a higher level and makes the ensemble based on every connected component detected by the binary segmentation networks. We also introduced and trained a classic multi-class semantic segmentation model as a reference and compared it to the ensemble-based approaches. We used 586 manually annotated images from 38 surgical videos for this research and published this dataset. LA - English DB - MTMT ER - TY - JOUR AU - Fábri, Csaba AU - Halász, Gábor AU - Cederbaum, Lorenz S. AU - Vibók, Ágnes TI - Impact of Cavity on Molecular Ionization Spectra JF - JOURNAL OF PHYSICAL CHEMISTRY LETTERS J2 - J PHYS CHEM LETT VL - 15 PY - 2024 IS - 17 SP - 4655 EP - 4661 PG - 7 SN - 1948-7185 DO - 10.1021/acs.jpclett.4c00247 UR - https://m2.mtmt.hu/api/publication/34834957 ID - 34834957 N1 - HUN-REN−ELTE Complex Chemical Systems Research Group, Budapest, H-1518, Hungary Department of Theoretical Physics, University of Debrecen, Debrecen, H-4002, Hungary Department of Information Technology, University of Debrecen, Debrecen, H-4002, Hungary Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, D-69120, Germany ELI-ALPS, ELI-HU Non-Profit Ltd, Dugonics tér 13, Szeged, H-6720, Hungary Export Date: 13 May 2024 Correspondence Address: Fábri, C.; HUN-REN−ELTE Complex Chemical Systems Research GroupHungary; email: ficsaba@staff.elte.hu Correspondence Address: Vibók, A.; Department of Theoretical Physics, Hungary; email: vibok@phys.unideb.hu Funding details: Deutsche Forschungsgemeinschaft, DFG Funding details: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIH, K146096 Funding details: Nemzeti Kutatási Fejlesztési és Innovációs Hivatal, NKFIH Funding text 1: The authors are indebted to NKFIH for funding (Grant No. K146096). The work performed in Budapest received funding from the HUN-REN Hungarian Research Network. Financial support by the Deutsche Forschungsgemeinschaft (DFG) (Grant No. CE 10/56-1) is gratefully acknowledged. AB - Ionization phenomena are widely studied for decades. With the advent of cavity technology, the question arises how the presence of quantum light affects the ionization of molecules. As the ionization spectrum is recorded from the ground state of the neutral molecule, it is usually possible to choose cavities which do not change the ground state of the target, but can have a significant impact on the ion and the ionization spectrum. Particularly interesting are cases where the produced ion exhibits conical intersections between its close-lying electronic states which is known to give rise to substantial nonadiabatic effects. We demonstrate by an explicit realistic example that vibrational modes not relevant in the absence of the cavity do play a decisive role when the molecule is in the cavity. In this example, dynamical symmetry breaking is responsible for the coupling between the ion and the cavity and the high spatial symmetry enables a control of their activity via the molecular orientation relative to the cavity field polarization. Significant impact on the spectrum by the cavity is found and shown to even substantially increase when less symmetric molecules are considered. LA - English DB - MTMT ER - TY - JOUR AU - Abdulameer, N.J. AU - Acharya, U. AU - Adare, A. AU - Aidala, C. AU - Ajitanand, N.N. AU - Akiba, Y. AU - Alfred, M. AU - Apadula, N. AU - Asano, H. AU - Azmoun, B. AU - Babintsev, V. AU - Bai, M. AU - Bandara, N.S. AU - Bannier, B. AU - Barish, K.N. AU - Bathe, S. AU - Bazilevsky, A. AU - Beaumier, M. AU - Beckman, S. AU - Belmont, R. AU - Berdnikov, A. AU - Berdnikov, Y. AU - Bichon, L. AU - Blankenship, B. AU - Blau, D.S. AU - Bok, J.S. AU - Borisov, V. AU - Boyle, K. AU - Brooks, M.L. AU - Bryslawskyj, J. AU - Bumazhnov, V. AU - Campbell, S. AU - Canoa, Roman V. AU - Chen, C.-H. AU - Chiu, M. AU - Chi, C.Y. AU - Choi, I.J. AU - Choi, J.B. AU - Chujo, T. AU - Citron, Z. AU - Connors, M. AU - Corliss, R. AU - Corrales, Morales Y. AU - Csanád, Máté AU - Csörgő, Tamás AU - Danley, T.W. AU - Datta, A. AU - Daugherity, M.S. AU - David, G. AU - Dean, C.T. AU - Deblasio, K. AU - Dehmelt, K. AU - Denisov, A. AU - Deshpande, A. AU - Desmond, E.J. AU - Dion, A. AU - Diss, P.B. AU - Do, J.H. AU - Doomra, V. AU - Drees, A. AU - Drees, K.A. AU - Durham, J.M. AU - Durum, A. AU - Enokizono, A. AU - Esha, R. AU - Fadem, B. AU - Fan, W. AU - Feege, N. AU - Fields, D.E. AU - Finger, M. AU - Finger, M. AU - Firak, D. AU - Fitzgerald, D. AU - Fokin, S.L. AU - Frantz, J.E. AU - Franz, A. AU - Frawley, A.D. AU - Gallus, P. AU - Gal, C. AU - Garg, P. AU - Ge, H. AU - Giles, M. AU - Giordano, F. AU - Glenn, A. AU - Goto, Y. AU - Grau, N. AU - Greene, S.V. AU - Grosse, Perdekamp M. AU - Gunji, T. AU - Guo, T. AU - Hachiya, T. AU - Haggerty, J.S. AU - Hahn, K.I. AU - Hamagaki, H. AU - Hamilton, H.F. AU - Hanks, J. AU - Han, S.Y. AU - Harvey, M. AU - Hasegawa, S. AU - Haseler, T.O.S. AU - Hashimoto, K. AU - Hemmick, T.K. AU - He, X. AU - Hill, J.C. AU - Hodges, A. AU - Hollis, R.S. AU - Homma, K. AU - Hong, B. AU - Hoshino, T. AU - Hotvedt, N. AU - Huang, J. AU - Imai, K. AU - Inaba, M. AU - Iordanova, A. AU - Isenhower, D. AU - Ivanishchev, D. AU - Jacak, B.V. AU - Jezghani, M. AU - Jiang, X. AU - Ji, Z. AU - Johnson, B.M. AU - Jouan, D. AU - Jumper, D.S. AU - Kanda, S. AU - Kang, J.H. AU - Kawall, D. AU - Kazantsev, A.V. AU - Key, J.A. AU - Khachatryan, V. AU - Khanzadeev, A. AU - Khatiwada, A. AU - Kimelman, B. AU - Kim, C. AU - Kim, D.J. AU - Kim, E.-J. AU - Kim, G.W. AU - Kim, M. AU - Kim, T. AU - Kincses, Dániel AU - Kingan, A. AU - Kistenev, E. AU - Kitamura, R. AU - Klatsky, J. AU - Kleinjan, D. AU - Kline, P. AU - Koblesky, T. AU - Komkov, B. AU - Kotov, D. AU - Kovacs, L. AU - Kurgyis, Bálint AU - Kurita, K. AU - Kurosawa, M. AU - Kwon, Y. AU - Lajoie, J.G. AU - Larionova, D. AU - Lebedev, A. AU - Lee, S. AU - Lee, S.H. AU - Leitch, M.J. AU - Lewis, N.A. AU - Lim, S.H. AU - Liu, M.X. AU - Li, X. AU - Li, X. AU - Loomis, D.A. AU - Lynch, D. AU - Lökös, Sándor AU - Majoros, Tamás AU - Makdisi, Y.I. AU - Makek, M. AU - Manion, A. AU - Manko, V.I. AU - Mannel, E. AU - McCumber, M. AU - McGaughey, P.L. AU - McGlinchey, D. AU - McKinney, C. AU - Meles, A. AU - Mendoza, M. AU - Mignerey, A.C. AU - Milov, A. AU - Mishra, D.K. AU - Mitchell, J.T. AU - Mitrankova, M. AU - Mitrankov, I. AU - Miyasaka, S. AU - Mizuno, S. AU - Mohamed, A. AU - Mohanty, A.K. AU - Mondal, M.M. AU - Montuenga, P. AU - Moon, T. AU - Morrison, D.P. AU - Moukhanova, T.V. AU - Mulilo, B. AU - Murakami, T. AU - Murata, J. AU - Mwai, A. AU - Nagashima, K. AU - Nagle, J.L. AU - Nagy, Márton AU - Nakagawa, I. AU - Nakagomi, H. AU - Nakano, K. AU - Nattrass, C. AU - Nelson, S. AU - Netrakanti, P.K. AU - Niida, T. AU - Nishimura, S. AU - Nouicer, R. AU - Novitzky, N. AU - Novák, Tamás AU - Nukazuka, G. AU - Nyanin, A.S. AU - O'Brien, E. AU - Ogilvie, C.A. AU - Orjuela, Koop J.D. AU - Orosz, M. AU - Osborn, J.D. AU - Oskarsson, A. AU - Ozawa, K. AU - Pak, R. AU - Pantuev, V. AU - Papavassiliou, V. AU - Park, J.S. AU - Park, S. AU - Patel, M. AU - Pate, S.F. AU - Peng, J.-C. AU - Peng, W. AU - Perepelitsa, D.V. AU - Perera, G.D.N. AU - Peressounko, D.Y. AU - Perezlara, C.E. AU - Perry, J. AU - Petti, R. AU - Pinkenburg, C. AU - Pinson, R. AU - Pisani, R.P. AU - Potekhin, M. AU - Pun, A. AU - Purschke, M.L. AU - Radzevich, P.V. AU - Rak, J. AU - Ramasubramanian, N. AU - Ramson, B.J. AU - Ravinovich, I. AU - Read, K.F. AU - Reynolds, D. AU - Riabov, V. AU - Riabov, Y. AU - Richford, D. AU - Rinn, T. AU - Rolnick, S.D. AU - Rosati, M. AU - Rowan, Z. AU - Rubin, J.G. AU - Runchey, J. AU - Sahlmueller, B. AU - Saito, N. AU - Sakaguchi, T. AU - Sako, H. AU - Samsonov, V. AU - Sarsour, M. AU - Sato, S. AU - Schaefer, B. AU - Schmoll, B.K. AU - Sedgwick, K. AU - Seidl, R. AU - Sen, A. AU - Seto, R. AU - Sett, P. AU - Sexton, A. AU - Sharma, D. AU - Shein, I. AU - Shi, Z. AU - Shibata, M. AU - Shibata, T.-A. AU - Shigaki, K. AU - Shimomura, M. AU - Shukla, P. AU - Sickles, A. AU - Silva, C.L. AU - Silvermyr, D. AU - Singh, B.K. AU - Singh, C.P. AU - Singh, V. AU - Slunečka, M. AU - Smith, K.L. AU - Snowball, M. AU - Soltz, R.A. AU - Sondheim, W.E. AU - Sorensen, S.P. AU - Sourikova, I.V. AU - Stankus, P.W. AU - Stepanov, M. AU - Stoll, S.P. AU - Sugitate, T. AU - Sukhanov, A. AU - Sumita, T. AU - Sun, J. AU - Sun, Z. AU - Sziklai, János István AU - Takahama, R. AU - Taketani, A. AU - Tanida, K. AU - Tannenbaum, M.J. AU - Tarafdar, S. AU - Taranenko, A. AU - Tieulent, R. AU - Timilsina, A. AU - Todoroki, T. AU - Tomášek, M. AU - Towell, C.L. AU - Towell, R. AU - Towell, R.S. AU - Tserruya, I. AU - Ueda, Y. AU - Ujvári, Balázs AU - Van, Hecke H.W. AU - Velkovska, J. AU - Virius, M. AU - Vrba, V. AU - Wang, X.R. AU - Wang, Z. AU - Watanabe, Y. AU - Watanabe, Y.S. AU - Wei, F. AU - White, A.S. AU - Wong, C.P. AU - Woody, C.L. AU - Wysocki, M. AU - Xia, B. AU - Xue, L. AU - Yalcin, S. AU - Yamaguchi, Y.L. AU - Yanovich, A. AU - Yin, Z. AU - Yoon, I. AU - Yoo, J.H. AU - Yushmanov, I.E. AU - Yu, H. AU - Zajc, W.A. AU - Zelenski, A. AU - Zhou, S. AU - Zou, L. TI - Nonprompt direct-photon production in Au+Au collisions at sNN =200 GeV JF - PHYSICAL REVIEW C J2 - PHYS REV C VL - 109 PY - 2024 IS - 4 PG - 25 SN - 2469-9985 DO - 10.1103/PhysRevC.109.044912 UR - https://m2.mtmt.hu/api/publication/34824673 ID - 34824673 N1 - Abilene Christian University, Abilene, TX 79699, United States Department of Physics, Augustana University, Sioux Falls, SD 57197, United States Department of Physics, Banaras Hindu University, Varanasi, 221005, India Bhabha Atomic Research Centre, Bombay, 400 085, India Baruch College, City University of New York, New York, NY 10010, United States Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, United States University of California-Riverside, Riverside, CA 92521, United States Faculty of Mathematics and Physics, Charles University, Troja, Prague, 180 00, Czech Republic Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing, 102413, China Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan University of Colorado, Boulder, CO 80309, United States Columbia University, New York, NY 10027, United States Nevis Laboratories, Irvington, NY 10533, United States Czech Technical University, Zikova 4, Prague 6, 166 36, Czech Republic Debrecen University, Egyetem tér 1, Debrecen, H-4010, Hungary ELTE, Eötvös Loránd University, Pázmány P.s. 1/A, Budapest, H-1117, Hungary Ewha Womans University, Seoul, 120-750, South Korea Florida A and M University, Tallahassee, FL 32307, United States Florida State University, Tallahassee, FL 32306, United States Georgia State University, Atlanta, GA 30303, United States Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan Department of Physics and Astronomy, Howard University, Washington, DC 20059, United States IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, 142281, Russian Federation University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States Institute for Nuclear Research, Russian Academy of Sciences, Prospekt 60 Letiya Oktyabrya 7a, Moscow, 117312, Russian Federation Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, Prague 8, 182 21, Czech Republic Iowa State University, Ames, IA 50011, United States Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura, Ibaraki-ken, Naka-gun, 319-1195, Japan Jeonbuk National University, Jeonju, 54896, South Korea Helsinki Institute of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä, FI-40014, Finland KEK, High Energy Accelerator Research Organization, Ibaraki, Tsukuba, 305-0801, Japan Korea University, Seoul, 02841, South Korea National Research Center, Kurchatov Institute, Moscow, 123098, Russian Federation Kyoto University, Kyoto, 606-8502, Japan Lawrence Livermore National Laboratory, Livermore, CA 94550, United States Los Alamos National Laboratory, Los Alamos, NM 87545, United States Department of Physics, Lund University, Box 118, Lund, SE-221 00, Sweden IPNL, CNRS, IN2P3, Université Lyon, Université Lyon 1, Villeurbanne, F-69622, France University of Maryland, College Park, MD 20742, United States Department of Physics, University of Massachusetts, Amherst, MA 01003-9337, United States MATE, Laboratory of Femtoscopy, Károly Róbert Campus, Gyöngyös, Hungary Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040, United States Mississippi State University, Mississippi State, MS 39762, United States Muhlenberg College, Allentown, PA 18104-5586, United States Nara Women's University, Kita-uoya,Nishi-machi, Nara, 630-8506, Japan National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute, Moscow, 115409, Russian Federation University of New Mexico, Albuquerque, NM 87131, United States New Mexico State University, Las Cruces, NM 88003, United States Physics and Astronomy Department, University of North Carolina at Greensboro, Greensboro, NC 27412, United States Department of Physics and Astronomy, Ohio University, Athens, OH 45701, United States Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States IPN-Orsay, Université Paris-Sud, CNRS, IN2P3, Université Paris-Saclay, BP 1, Orsay, F-91406, France Peking University, Beijing, 100871, China PNPI, Petersburg Nuclear Physics Institute, Leningrad Region, Gatchina, 188300, Russian Federation Pusan National University, Pusan, 46241, South Korea RIKEN Nishina Center for Accelerator-Based Science, Saitama, Wako, 351-0198, Japan RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973-5000, United States Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan Saint Petersburg State Polytechnic University, St. Petersburg, 195251, Russian Federation Department of Physics and Astronomy, Seoul National University, Seoul, 151-742, South Korea Chemistry Department, Stony Brook University, SUNY, Stony Brook, NY 11794-3400, United States Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, NY 11794-3800, United States University of Tennessee, Knoxville, TN 37996, United States Texas Southern University, Houston, TX 77004, United States Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo, 152-8551, Japan Tomonaga Center for the History of the Universe, University of Tsukuba, Ibaraki, Tsukuba, 305, Japan Vanderbilt University, Nashville, TN 37235, United States Weizmann Institute, Rehovot, 76100, Israel Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Hungarian Academy of Sciences (Wigner RCP, RMKI), P.O. Box 49, Budapest 114, H-1525, Hungary Yonsei University, IPAP, Seoul, 120-749, South Korea Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, Zagreb, HR-10002, Croatia Department of Physics, School of Natural Sciences, University of Zambia, Great East Road Campus, Box 32379, Lusaka, Zambia Export Date: 22 May 2024 LA - English DB - MTMT ER - TY - JOUR AU - Szabó, Máté TI - Building Ensemble Models with Web Services on Microservice Architecture JF - INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS J2 - INFORMATICA (LJUBLJANA) VL - 48 PY - 2024 IS - 7 SP - 1 EP - 10 PG - 10 SN - 0350-5596 DO - 10.31449/inf.v48i7.4918 UR - https://m2.mtmt.hu/api/publication/34805117 ID - 34805117 LA - English DB - MTMT ER - TY - JOUR AU - Kiss, Emőke AU - Mester, Tamás AU - Balla, Dániel TI - A klímaaggodalmak és környezetbarát viselkedés kapcsolatának és jellemzőinek feltárása Debrecenben JF - TERÜLETI STATISZTIKA J2 - TERÜLETI STATISZTIKA PY - 2024 SN - 0018-7828 UR - https://m2.mtmt.hu/api/publication/34801314 ID - 34801314 AB - A klímaváltozás kihívásainak és alkalmazkodási lehetőségeinek elemzésekor a klímaaggodalmak és a környezetbarát viselkedés kapcsolatának kérdésköre is gyakran felvetődik. A 2020-ban kitört COVID-19 világjárvány elterelte az emberek figyelmét a klímaváltozásról, így a lakosság klímaaggodalmainak feltárása nagyon fontossá vált ebben az időszakban. Kutatásunkban mintaterületként egy kelet-közép-európai várost, Magyarország második legnépesebb települését, Debrecent, Hajdú-Bihar vármegyeszékhelyét választottuk. Munkánk során kérdőíves felmérést végeztünk 2020-ban a lakosok körében (N=200). Tanulmányunk fő célja a klímaaggodalmak és a környezetbarát viselkedés kapcsolatának vizsgálata és feltárása volt. A klímaaggodalom, a környezetbarát viselkedés és a kiválasztott prediktorok közötti kapcsolat szorosságát, erősségét és intenzitását korrelációelemzéssel vizsgáltuk, a regresszióelemzés a kiválasztott változók hatását és kapcsolatát vizsgálta. Kimutattuk, hogy a lakosok Klímaaggodalom Indexe (KAI) és Környezetbarát Viselkedés Indexe (KVI) magas. Kutatásunkban a korrelációelemzés egyik legfontosabb eredménye, hogy a KAI és KVI között egyáltalán nem találtunk szignifikáns kapcsolatot, tehát a kettő nem függött össze mintánkban. Másik fontos eredményük, hogy a KVI és a Kockázatérzékelés Indexek (KI) között sem mutatható ki szignifikáns kapcsolat, ugyanakkor a KAI és a KI között szignifikánsan pozitív irányú, közepes erősségű kapcsolatot fedeztünk fel. A többváltozós lineáris regresszióelemzésekben a demográfiai faktorok csak enyhén mérsékelték a változók hatását a KAI-ra és KVI-re. Eredményeink alátámasztják azokat a tanulmányokat, amelyek szerint az egyének klímaaggodalma nem vezet következetesen környezetbarát magatartáshoz. LA - Hungarian DB - MTMT ER - TY - JOUR AU - Al-Hamadani, Mokhaled N. A. AU - Fadhel, Mohammed A. AU - Alzubaidi, Laith AU - Harangi, Balázs TI - Reinforcement Learning Algorithms and Applications in Healthcare and Robotics: A Comprehensive and Systematic Review JF - SENSORS J2 - SENSORS-BASEL VL - 24 PY - 2024 IS - 8 SP - 1 EP - 42 PG - 42 SN - 1424-8220 DO - 10.3390/s24082461 UR - https://m2.mtmt.hu/api/publication/34796795 ID - 34796795 AB - Reinforcement learning (RL) has emerged as a dynamic and transformative paradigm in artificial intelligence, offering the promise of intelligent decision-making in complex and dynamic environments. This unique feature enables RL to address sequential decision-making problems with simultaneous sampling, evaluation, and feedback. As a result, RL techniques have become suitable candidates for developing powerful solutions in various domains. In this study, we present a comprehensive and systematic review of RL algorithms and applications. This review commences with an exploration of the foundations of RL and proceeds to examine each algorithm in detail, concluding with a comparative analysis of RL algorithms based on several criteria. This review then extends to two key applications of RL: robotics and healthcare. In robotics manipulation, RL enhances precision and adaptability in tasks such as object grasping and autonomous learning. In healthcare, this review turns its focus to the realm of cell growth problems, clarifying how RL has provided a data-driven approach for optimizing the growth of cell cultures and the development of therapeutic solutions. This review offers a comprehensive overview, shedding light on the evolving landscape of RL and its potential in two diverse yet interconnected fields. LA - English DB - MTMT ER - TY - JOUR AU - Oláh, Csaba Zsolt AU - Czakó, Judit AU - Godó, Zoltán Attila AU - Farkas, Mária AU - Papp, Miklós AU - Czabajszki, Máté TI - Co-infection of SARS-CoV-2 and Clostridioides difficile in elderly patients treated in a neurosurgery postoperative care unit (Idegsebészeti posztoperatív őrzőben kezelt idős betegek SARS-CoV-2 és Clostridioides difficile kombinált fertőzése) JF - ORVOSI HETILAP J2 - ORV HETIL VL - 165 PY - 2024 IS - 12 SP - 464 EP - 469 PG - 6 SN - 0030-6002 DO - 10.1556/650.2024.32975 UR - https://m2.mtmt.hu/api/publication/34780693 ID - 34780693 AB - A COVID–19-pandémia során fellépő Clostridioides difficile fertőzés incidenciájával kapcsolatban egymással ellentétes eredmények ismertek: számos tanulmány szerint növekedett, míg más tanulmányok szerint csökkent. A második COVID–19-hullám tetőfokán idegsebészeti posztoperatív őrzőnkben 11, intenzív ellátást igénylő beteget kezeltünk. A 11 betegből 7 COVID–19-pozitív lett, és közülük 4 betegnél még C. difficile fertőzés is kialakult. A 4-ből 2 beteget elveszítettünk. Bár megfigyeléseinket kevés beteg ellátása során gyűjtöttük, úgy ítéljük meg, hogy súlyos állapotú betegeknél a SARS-CoV-2 és a C. difficile együttes fertőzése többletkockázatot jelent. A COVID–19-ben alkalmazott, széles spektrumú szisztémás antibiotikumok használata növelheti a C. difficile infekció rizikóját. Jól átgondolt infekciókontroll, a megfelelő higiéné betartása, az alkoholos kézfertőtlenítők mellett a rendszeres szappanos kézmosások mérsékelhetik a nosocomialis C. difficile fertőzések számát. Orv Hetil. 2024; 165(12): 464–469. LA - Hungarian DB - MTMT ER - TY - JOUR AU - Fábri, Csaba AU - Csehi, András AU - Halász, Gábor AU - Cederbaum, Lorenz S. AU - Vibók, Ágnes TI - Classical and quantum light-induced non-adiabaticity in molecular systems JF - AVS QUANTUM SCIENCE J2 - AVS QUANTUM SCI VL - 6 PY - 2024 IS - 2 PG - 19 SN - 2639-0213 DO - 10.1116/5.0191522 UR - https://m2.mtmt.hu/api/publication/34779048 ID - 34779048 N1 - Funding Agency and Grant Number: NKFIH [K128396, K146096]; HUN-REN Hungarian Research Network; Deutsche Forschungsgemeinschaft (DFG) [CE 10/56-1]; Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences [BO/00474/22/11] Funding text: The authors are indebted to NKFIH for funding (Grant Nos. K128396 and K146096). The work performed in Budapest received funding from the HUN-REN Hungarian Research Network. Financial support by the Deutsche Forschungsgemeinschaft (DFG) (Grant No. CE 10/56-1) is gratefully acknowledged. A.C. is grateful for the support of the Janos Bolyai Research Scholarship (No. BO/00474/22/11) of the Hungarian Academy of Sciences. L.S.C., & Aacute;.V., and G.J.H. thank Nimrod Moiseyev for many fruitful discussions and for a long-term collaboration. & Aacute;.V. thanks Claudiu Genes for valuable discussions. AB - The exchange of energy between electronic and nuclear motion is the origin of non-adiabaticity and plays an important role in many molecular phenomena and processes. Conical intersections (CIs) of different electronic potential energy surfaces lead to the most singular non-adiabaticity and have been intensely investigated. The coupling of light and matter induces conical intersections, which are termed light-induced conical intersections (LICIs). There are two kinds of LICIs, those induced by classical (laser) light and those by quantum light like that provided by a cavity. The present work reviews the subject of LICIs, discussing the achievements made so far. Particular attention is paid to comparing classical and quantum LICIs, their similarities and differences and their relationship to naturally occurring CIs. In contrast to natural CIs, the properties of which are dictated by nature, the properties of their light-induced counterparts are controllable by choosing the frequency and intensity (or coupling to the cavity) of the external light source. This opens the door to inducing and manipulating various kinds of non-adiabatic effects. Several examples of diatomic and polyatomic molecules are presented covering both dynamics and spectroscopy. The computational methods employed are discussed as well. To our opinion, the young field of LICIs and their impact shows much future potential. LA - English DB - MTMT ER - TY - JOUR AU - Kátai, Zoltán AU - Osztián, Pálma Rozália AU - Iclanzan, Dávid András TI - Enacting algorithms: Evolution of the algorythmics storytelling JF - EDUCATION AND INFORMATION TECHNOLOGIES J2 - EDUC INF TECHNOL VL - 29 PY - 2024 SP - 1 SN - 1360-2357 DO - 10.1007/s10639-024-12617-y UR - https://m2.mtmt.hu/api/publication/34778079 ID - 34778079 AB - Visual storytelling, particularly through dance choreographies as showcased in previous AlgoRythmics performances, has been effective in communicating relatively straightforward algorithms in an engaging and memorable way. Nevertheless, when addressing complex algorithmic concepts, an approach with greater expressiveness and flexibility becomes necessary. Consequently, this study introduces stage performances as an innovative solution, using cinematic representation to successfully convey and communicate these intricate concepts and processes. To evaluate the effectiveness of this approach, a short film was designed, produced, and showcased to a second-semester CS2 university course audience studying programming techniques. Following an opening scene that establishes the context, the subsequent three acts vividly depict ad hoc, greedy, and dynamic programming solutions in response to the posed programming challenge. After the screening, a questionnaire was administered, built on four key constructs of the Technology Acceptance Model, as well as other potential facilitating factors. The study reveals 100% positive perceptions of educational benefits, with the vast majority of students expressing agreement regarding the utility, enjoyment, engagement, creativity, filmic quality, and cognitive benefits of short films. Additionally, a remarkable 96% reported the intent to utilize this approach. Our subsequent Structural Equation Modeling analysis discovered that students whose learning styles were in sync with this approach demonstrated a robust correlation between their perception of the method’s value, their enjoyment of the process, and their overall attitude towards this pedagogical method. This study confirms the potential of visual storytelling through short films as an effective tool for delivering programming education. The findings provide valuable insights for computer science educators seeking to engage learners and convey complex information in an attractive and effective way. LA - English DB - MTMT ER - TY - JOUR AU - Mihálydeák, Tamás AU - Kádek, Tamás AU - Nagy, Dávid AU - Chakraborty, Mihir K. TI - Intensions and extensions of granules: A two-component treatment JF - INTERNATIONAL JOURNAL OF APPROXIMATE REASONING J2 - INT J APPROX REASON VL - 169 PY - 2024 SP - 1 EP - 15 PG - 15 SN - 0888-613X DO - 10.1016/j.ijar.2024.109182 UR - https://m2.mtmt.hu/api/publication/34776900 ID - 34776900 LA - English DB - MTMT ER -