TY - JOUR AU - Dalaiden, Q AU - Abram, NJ. AU - Goosse, H AU - Holland, PR. AU - O’Connor, GK. AU - Topál, Dániel TI - Multi‐Decadal Variability of Amundsen Sea Low Controlled by Natural Tropical and Anthropogenic Drivers JF - GEOPHYSICAL RESEARCH LETTERS J2 - GEOPHYS RES LETT VL - 51 PY - 2024 IS - 16 SN - 0094-8276 DO - 10.1029/2024GL109137 UR - https://m2.mtmt.hu/api/publication/35172843 ID - 35172843 AB - A crucial factor influencing the mass balance of the West Antarctic Ice Sheet is the Amundsen Sea Low (ASL), a climatological low‐pressure region situated off the West Antarctic coast. However, albeit the deepening of the ASL since the 1950s has been attributed to anthropogenic forcing, the multi‐decadal variability of the ASL remains poorly understood, because of a lack of long observations. Here, we apply a newly developed data assimilation method to reconstruct the ASL over 1870–2000. We study the forced and internal variability of the ASL using our new reconstruction in concert with existing large ensembles of climate model simulations. Our findings robustly demonstrate that an atmospheric teleconnection originating from the tropical Indo‐Pacific is the main driver of ASL variability at the multi‐decadal time scale, with resemblance to the Interdecadal Pacific Oscillation. Since the mid‐20th century, anthropogenic forcing has emerged as a dominant contributor to the strengthening of the ASL. LA - English DB - MTMT ER - TY - JOUR AU - Wang, Z AU - Ding, Q AU - Wu, R AU - Ballinger, TJ. AU - Guan, B AU - Bozkurt, D AU - Nash, D AU - Baxter, I AU - Topál, Dániel AU - Li, Z AU - Huang, G AU - Chen, W AU - Chen, S AU - Cao, X AU - Chen, Z TI - Role of atmospheric rivers in shaping long term Arctic moisture variability JF - NATURE COMMUNICATIONS J2 - NAT COMMUN VL - 15 PY - 2024 IS - 1 SN - 2041-1723 DO - 10.1038/s41467-024-49857-y UR - https://m2.mtmt.hu/api/publication/35080824 ID - 35080824 AB - Atmospheric rivers (ARs) reaching high-latitudes in summer contribute to the majority of climatological poleward water vapor transport into the Arctic. This transport has exhibited long term changes over the past decades, which cannot be entirely explained by anthropogenic forcing according to ensemble model responses. Here, through observational analyses and model experiments in which winds are adjusted to match observations, we demonstrate that low-frequency, large-scale circulation changes in the Arctic play a decisive role in regulating AR activity and thus inducing the recent upsurge of this activity in the region. It is estimated that the trend in summertime AR activity may contribute to 36% of the increasing trend of atmospheric summer moisture over the entire Arctic since 1979 and account for over half of the humidity trends in certain areas experiencing significant recent warming, such as western Greenland, northern Europe, and eastern Siberia. This indicates that AR activity, mostly driven by strong synoptic weather systems often regarded as stochastic, may serve as a vital mechanism in regulating long term moisture variability in the Arctic. LA - English DB - MTMT ER - TY - JOUR AU - Hanna, E AU - Topál, Dániel AU - Box, JE. AU - Buzzard, S AU - Christie, FDW. AU - Hvidberg, C AU - Morlighem, M AU - De Santis, L AU - Silvano, A AU - Colleoni, F AU - Sasgen, I AU - Banwell, AF. AU - van den Broeke, MR. AU - DeConto, R AU - De Rydt, J AU - Goelzer, H AU - Gossart, A AU - Gudmundsson, GH AU - Lindbäck, K AU - Miles, B AU - Mottram, R AU - Pattyn, F AU - Reese, R AU - Rignot, E AU - Srivastava, A AU - Sun, S AU - Toller, J AU - Tuckett, PA. AU - Ultee, L TI - Short- and long-term variability of the Antarctic and Greenland ice sheets JF - NATURE REVIEWS EARTH & ENVIRONMENT J2 - NAT REV EARTH ENVIRON VL - 5 PY - 2024 SP - 193 EP - 210 PG - 18 SN - 2662-138X DO - 10.1038/s43017-023-00509-7 UR - https://m2.mtmt.hu/api/publication/34570958 ID - 34570958 N1 - Funding Agency and Grant Number: World Climate Research Programme's Climate & Cryosphere core project; NERC [NE/W005875/1, NE/Y000129/1, NE/V014285/1]; Prince Albert II of Monaco Foundation; European Union [820575]; UKRI Future Leaders Fellowship [MR/W011816/1]; EU [869304]; Research Council of Norway [295046, 324639, PNRA19_00022, PNRA18_00002]; SCAR INSTANT Programme; EU's Horizon Europe Programme [101060452]; OCEAN:ICE; Helmholtz Climate Initiative REKLIM (Regional Climate Change), a joint research project of the Helmholtz Association of German Research Centres (HGF); New Zealand Ministry for Business Innovation and Employment [ANTA1801]; Antarctic Science Platform Funding text: The authors are grateful to the World Climate Research Programme's Climate & Cryosphere core project, the International Arctic Science Committee and SCAR for co-sponsoring an ISMASS workshop that led to this collaboration. E.H. and A. Silvano acknowledge funding from NERC (NE/W005875/1, NE/Y000129/1 and NE/V014285/1). F.D.W.C. acknowledges funding from the Prince Albert II of Monaco Foundation. R.R. was supported by the TiPACCs project, which receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 820575. J.D.R. was supported by a UKRI Future Leaders Fellowship (grant agreement no MR/W011816/1). H.G. received funding from the EU's Horizon 2020 Research and Innovation Programme under grant agreement number 869304, PROTECT and the Research Council of Norway under projects 295046 and 324639. L.D.S. acknowledges funding from the PNRA19_00022 project. F.C. acknowledges funding from the PNRA18_00002 project and from the SCAR INSTANT Programme. R.M. received funding from the EU's Horizon Europe Programme under grant agreement number 101060452, OCEAN:ICE. I.S. acknowledges funding by the Helmholtz Climate Initiative REKLIM (Regional Climate Change), a joint research project of the Helmholtz Association of German Research Centres (HGF). A.G. acknowledges financial support from the New Zealand Ministry for Business Innovation and Employment (grant number ANTA1801; Antarctic Science Platform). The authors thank S. Hanna for the help with figure preparation. LA - English DB - MTMT ER - TY - JOUR AU - Demény, Attila AU - Czuppon, György AU - Kern, Zoltán AU - Hatvani, István Gábor AU - Topál, Dániel AU - Karlik, Máté AU - Surányi, Gergely AU - Molnár, Mihály AU - Kiss, Gabriella Ilona AU - Szabó, Máté Zoltán AU - Shen, CC AU - Hu, HM AU - May, Zoltán TI - A speleothem record of seasonality and moisture transport around the 8.2 ka event in Central Europe (Vacska Cave, Hungary) JF - QUATERNARY RESEARCH J2 - QUATERNARY RES VL - 118 PY - 2024 SP - 195 EP - 210 PG - 16 SN - 0033-5894 DO - 10.1017/qua.2023.33 UR - https://m2.mtmt.hu/api/publication/34082661 ID - 34082661 N1 - Published online: 28 July 2023 LA - English DB - MTMT ER - TY - THES AU - Topál, Dániel TI - Large-scale atmospheric circulation driven changes in the Arctic cryosphere and Central-European hydroclimate. with insights from paleoclimate TS - with insights from paleoclimate PB - Eötvös Loránd Tudományegyetem (ELTE) PY - 2023 SP - 123 DO - 10.15476/ELTE.2022.275 UR - https://m2.mtmt.hu/api/publication/34790108 ID - 34790108 LA - English DB - MTMT ER - TY - JOUR AU - Topál, Dániel AU - Hatvani, István Gábor AU - Kern, Zoltán TI - A közép-európai évtizedes hidroklíma-előrejelzések bizonytalanságairól • On the Decadal Hydroclimate Projection Uncertainties in Central-Europe JF - MAGYAR TUDOMÁNY J2 - MAGYAR TUDOMÁNY VL - 184 PY - 2023 IS - 9 SP - 1174 EP - 1181 PG - 8 SN - 0025-0325 DO - 10.1556/2065.184.2023.9.10 UR - https://m2.mtmt.hu/api/publication/34124762 ID - 34124762 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Topál, Dániel AU - Ding, Q TI - Author Correction: Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections (vol 3, pg 710, 2023) JF - NATURE CLIMATE CHANGE J2 - NAT CLIM CHANGE VL - 13 PY - 2023 SN - 1758-678X DO - 10.1038/s41558-023-01762-w UR - https://m2.mtmt.hu/api/publication/34107270 ID - 34107270 LA - English DB - MTMT ER - TY - JOUR AU - Feng, X AU - Ding, Q AU - Wu, L AU - Jones, C AU - Wang, H AU - Bushuk, M AU - Topál, Dániel TI - Comprehensive representation of tropical-extratropical teleconnections obstructed by tropical Pacific convection biases in CMIP6 JF - JOURNAL OF CLIMATE J2 - J CLIMATE VL - 36 PY - 2023 IS - 20 SP - 7041 EP - 7059 PG - 45 SN - 0894-8755 DO - 10.1175/JCLI-D-22-0523.1 UR - https://m2.mtmt.hu/api/publication/34063641 ID - 34063641 N1 - Export Date: 27 February 2024 Correspondence Address: Ding, Q.; Department of Geography, United States; email: qinghua@ucsb.edu AB - The central role of tropical sea surface temperature (SST) variability in modulating Northern Hemisphere (NH) extratropical climate has long been known. However, the prevailing pathways of teleconnections in observations and the ability of climate models to replicate these observed linkages remain elusive. Here, we apply maximum covariance analysis between atmospheric circulation and tropical SST to reveal two co-existing tropical-extratropical teleconnections albeit with distinctive spatiotemporal characteristics. The first mode, resembling the Pacific-North American (PNA) pattern, favors a Tropical-Arctic in-phase (warm-Pacific-warm-Arctic) teleconnection in boreal spring and winter. However, the second mode, with a slight seasonal preference of summer, is manifested as an elongated Rossby-wave train emanating from the tropical eastern Pacific that features an out-of-phase relationship (cold-Pacific-warm-Arctic) between tropical central Pacific SSTs and temperature variability over the Arctic (referred to as the PARC mode). While climate models participating in CMIP6 appear to successfully simulate the PNA mode and its temporal characteristics, the majority of models’ skill in reproducing the PARC mode is obstructed to some extent by biases in simulating low-frequency SST and rainfall variability over the tropical eastern Pacific and the climatological mean flow over the North Pacific during boreal summer. Considering the contribution of the PARC mode in shaping low frequency climate variations over the past 42 years from the tropics to the Arctic, improving models’ capability to capture the PARC mode is essential to reduce uncertainties associated with decadal prediction and climate change projection over the NH. LA - English DB - MTMT ER - TY - CONF AU - Bondár, István AU - Sindelarova, T AU - Ghica, DV AU - Mitterbauer, U AU - Liashchuk, O AU - Neagoe, C AU - Pásztor, Marcell Sebestyén AU - Base, J AU - Chum, J AU - Ionescu, C AU - Czanik, Csenge AU - Topál, Dániel AU - Le Pichon, A TI - The Central and Eastern European Infrasound Network T2 - CTBT: Science and Technology Conference 2023 PY - 2023 UR - https://m2.mtmt.hu/api/publication/34035469 ID - 34035469 LA - English DB - MTMT ER - TY - CONF AU - Topál, Dániel AU - Ding, Q TI - Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections T2 - EGU General Assembly 2023: Abstracts PB - European Geosciences Union (EGU) C1 - München PY - 2023 PG - 1 DO - 10.5194/egusphere-egu23-3971 UR - https://m2.mtmt.hu/api/publication/33873458 ID - 33873458 LA - English DB - MTMT ER -