TY - THES AU - Végh, Ádám TI - A felületi olvadás és az általa befolyásolt fázisegyensúlyok modellezése makroszkopikus és nanoméretű rendszerekben PY - 2024 UR - https://m2.mtmt.hu/api/publication/34718935 ID - 34718935 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Végh, Ádám AU - Korózs, József AU - Kaptay, György TI - Extension of the Gibbs–Duhem Equation to the Partial Molar Surface Thermodynamic Properties of Solutions JF - LANGMUIR J2 - LANGMUIR VL - 38 PY - 2022 IS - 16 SP - 4906 EP - 4912 PG - 7 SN - 0743-7463 DO - 10.1021/acs.langmuir.2c00229 UR - https://m2.mtmt.hu/api/publication/32842254 ID - 32842254 LA - English DB - MTMT ER - TY - GEN AU - Kárpáti, Viktor AU - Dr. Szabó, Gábor AU - Barna, Dániel AU - Koncz-Horváth, Dániel AU - Korózs, József AU - Végh, Ádám AU - Kaptay, György AU - Mertinger, Valéria TI - Határfelületi folyamatok Nb-Ti/Nb/Cu szupravezető lemezes kompozitban PY - 2021 UR - https://m2.mtmt.hu/api/publication/32837867 ID - 32837867 N1 - előadás LA - Hungarian DB - MTMT ER - TY - JOUR AU - Kárpáti, Viktor AU - Szabó, Gábor AU - Szűcs, Máté AU - Végh, Ádám AU - Koncz-Horváth, Dániel AU - Mertinger, Valéria TI - Nb-Ti/Cu bimetál határfelületi diffúziós folyamatainak vizsgálata JF - ANYAGOK VILÁGA J2 - ANYAGOK VILÁGA VL - 16 PY - 2021 IS - 1 SP - 24 EP - 32 PG - 9 SN - 1586-0140 UR - https://m2.mtmt.hu/api/publication/31895513 ID - 31895513 N1 - "A cikkben/előadásban/tanulmányban ismertetett kutató munka az EFOP-3.6.1-16-2016-00011 jelű „Fiatalodó és Megújuló Egyetem – Innovatív Tudásváros – a Miskolci Egyetem intelligens szakosodást szolgáló intézményi fejlesztése” projekt részeként – a Széchenyi 2020 keretében – az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg" = “The described article/presentation/study was carried out as part of the EFOP-3.6.1-16-00011 “Younger and Renewing University – Innovative Knowledge City – institutional development of the University of Miskolc aiming at intelligent specialisation” project implemented in the framework of the Szechenyi 2020 program. The realization of this project is supported by the European Union, co-financed by the European Social Fund.” LA - Hungarian DB - MTMT ER - TY - CONF AU - Végh, Ádám AU - Kaptay, György TI - Calculation of Phase Diagrams for One Component Macroand Nano-systems Taking into Account the Effect of Surface Melting T2 - CALPHAD XLVIII Conference PY - 2019 SP - 83 UR - https://m2.mtmt.hu/api/publication/31337725 ID - 31337725 N1 - Szóbeli előadás (oral presentation) AB - Nano-Calphad provides a method to calculate phase diagrams for nano-systems [1]. The effect of size is significant only in nano-systems with at least one phase with at least one of its dimensions below 100 nm. The evaporation, the melting and the sublimation lines for nano-phases depend also on the number of atoms in nano-systems, not only on pressure, temperature and composition as is the case for macro-systems. In some macroscopic and nano-sized system with surface melting [2] there is a new transition line what is missing in unary phase diagrams. In macroscopic systems it is called surface melting transition (SMT) line, but in nanoscopic systems it is called solidus line. That means there is a new triple point on p-T phase diagram that is belong to SMT line. Solid and nano-thin liquid layer coexist between SMT line and bulk melting transition line (BMT) at a given pressure what is higher than pressure of triple point of SMT (Fig.1). The nano-systems differ from macroscopic systems in that in nano-systems the size of the solid phase is comparable to the size of the liquid phase between solidus and liquidus transition line. The solidus and liquidus transition lines merge into one melting line on a critical size of nano-phase. This work was financed by the GINOP 2.3.2 – 15 – 2016 – 00027 project. References: [1] G. Kaptay: Nano-Calphad: extension of the CALPHAD method to systems with nano-phases and complexions. J Mater Sci, 2012, 47, 8320-8335. [2] A. Vegh, G. Kaptay: Modelling surface melting of macro-crystals and melting of nano-crystals for the case of perfectly wetting liquids in one-component systems using lead as an example. CALPHAD, 2018, 63, 37-50. LA - English DB - MTMT ER - TY - JOUR AU - Végh, Ádám AU - Kaptay, György TI - Modelling surface melting of macro-crystals and melting of nano-crystals for the case of perfectly wetting liquids in one-component systems using lead as an example JF - CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY J2 - CALPHAD VL - 63 PY - 2018 SP - 37 EP - 50 PG - 14 SN - 0364-5916 DO - 10.1016/j.calphad.2018.08.007 UR - https://m2.mtmt.hu/api/publication/27700317 ID - 27700317 AB - It is known that the majority of crystals melt without superheating. It is because liquids usually perfectly wet their own crystals, leading to surface melting at a lower temperature compared to the bulk melting point of the same crystal. In this paper first this phenomenon is modelled. The equilibrium thickness of the liquid nano-layer is found to approach asymptotically infinity as temperature approaches the bulk melting point of the macro-crystal. Further, the size of the solid crystal is gradually reduced below 100 nm and the size dependence of melting nano-crystals is modelled. Calculations are performed for pure lead (Pb), for which experimental results were published for both of the above mentioned phenomena. The validity of our models is confirmed by these literature experimental results. Co-existence of a core solid and a liquid shell is found in a finite temperature range below the macroscopic melting point in one-component nano-systems, explained by the extended phase rule of Gibbs. The lower temperature of this T-range is called here the solidus temperature, while the upper temperature of this T-range is called here the liquidus temperature of the one-component nano-crystal. Both the solidus and liquidus temperatures of the nano-crystal decrease with decreasing particle size and merge together at a critical particle size (found at 4.7 nm and at 493 K for pure lead with bulk melting point of 600.6 K). Below this critical size the nano-particle melts at a single temperature. A general rule is established claiming that when a one-component macro-crystal melts with surface melting, then the same nano-crystal melts with a solid-liquid co-existence within a finite temperature range and vice versa. Three principle types of binary nanophase diagrams are predicted for each type of macro-phase diagram, depending on whether the two components melt with or without surface melting. LA - English DB - MTMT ER - TY - JOUR AU - Végh, Ádám AU - Mekler, Csaba AU - Dezső, András AU - Kaptay, György TI - [P114] Grain-boundary segregation transition in the binary Fe-P alloy JF - CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY J2 - CALPHAD VL - 51 PY - 2015 SP - 409 EP - 409 PG - 1 SN - 0364-5916 DO - 10.1016/j.calphad.2015.01.201 UR - https://m2.mtmt.hu/api/publication/30634646 ID - 30634646 LA - English DB - MTMT ER - TY - CHAP AU - Kaptay, György AU - Trampus, Péter AU - Mekler, Csaba AU - Végh, Ádám AU - Dezső, A AU - Kresz, Norbert ED - Ladányi, Gábor ED - Trampus, Péter TI - Szerkezeti acélok károsodási mechanizmusa neutronsugárzás hatására T2 - A jelen tudománya – A jövő gyakorlata PB - DUF Press CY - Budapest T3 - Dunakavics könyvek ; 4. PY - 2014 SP - 56 EP - 66 PG - 11 UR - https://m2.mtmt.hu/api/publication/2721843 ID - 2721843 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Végh, Ádám AU - Mekler, Csaba AU - Kaptay, György TI - A unified theoretical framework to model bulk, surface and interfacial thermodynamic properties of immiscible liquid alloys JF - MATERIALS SCIENCE FORUM J2 - MATER SCI FORUM VL - 752 PY - 2013 SP - 10 EP - 19 PG - 10 SN - 0255-5476 DO - 10.4028/www.scientific.net/MSF.752.10 UR - https://m2.mtmt.hu/api/publication/2397565 ID - 2397565 N1 - Materials Science at University of Miskolc. Special topic volume with invited peer reviewed papers only. Durnten-Zurich: Trans Tech Publications, 2013. AB - Bulk, surface and interface thermodynamics of immiscible liquid alloys are considered within a unified theoretical framework. For bulk thermodynamic functions the exponential and the combined linear-exponential equations are discussed, obeying the 4th law of thermodynamics. Surface phase transition is discussed in details. For surface and interface thermodynamics the monolayer Butler equation is compared to the multilayer model. During further assessment of bulk thermodynamic data of immiscible liquid alloys their experimentally measured surface tension and interfacial energy should be also taken into account, coupled with the models presented here. © (2013) Trans Tech Publications, Switzerland. LA - English DB - MTMT ER -