@article{MTMT:34452952, title = {Packing up the genome}, url = {https://m2.mtmt.hu/api/publication/34452952}, author = {Kiss, Bálint and Kellermayer, Miklós}, doi = {10.7554/eLife.94128}, journal-iso = {ELIFE}, journal = {ELIFE}, volume = {12}, unique-id = {34452952}, issn = {2050-084X}, abstract = {Nucleotide and force-dependent mechanisms control how the viral genome of lambda bacteriophage is inserted into capsids.}, keywords = {VIRUSES; bacteriophage; Structural biology; genome packaging; packaging motor}, year = {2023}, eissn = {2050-084X}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553} } @mastersthesis{MTMT:34444219, title = {STRUCTURE, NANOMECHANICS AND INFECTION DYNAMICS OF SINGLE VIRUS PARTICLES}, url = {https://m2.mtmt.hu/api/publication/34444219}, author = {Kiss, Bálint}, doi = {10.14753/SE.2023.2799}, unique-id = {34444219}, year = {2023}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426} } @article{MTMT:34231576, title = {Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulations}, url = {https://m2.mtmt.hu/api/publication/34231576}, author = {Nonn, A. and Kiss, Bálint and Pezeshkian, W. and Tancogne-Dejean, T. and Cerrone, A. and Kellermayer, Miklós and Bai, Y. and Li, W. and Wierzbicki, T.}, doi = {10.1016/j.jmbbm.2023.106153}, journal-iso = {J MECH BEHAV BIOMED}, journal = {JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS}, volume = {148}, unique-id = {34231576}, issn = {1751-6161}, year = {2023}, eissn = {1878-0180}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553} } @article{MTMT:34058342, title = {Insights into the Structure of Comirnaty Covid-19 Vaccine: A Theory on Soft, Partially Bilayer-Covered Nanoparticles with Hydrogen Bond-Stabilized mRNA–Lipid Complexes}, url = {https://m2.mtmt.hu/api/publication/34058342}, author = {Szebeni, János and Kiss, Bálint and Bozó, Tamás and Turjeman, Keren and Levi-Kalisman, Yael and Barenholz, Yechezkel and Kellermayer, Miklós}, doi = {10.1021/acsnano.2c11904}, journal-iso = {ACS NANO}, journal = {ACS NANO}, volume = {17}, unique-id = {34058342}, issn = {1936-0851}, year = {2023}, eissn = {1936-086X}, pages = {13147-13157}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Bozó, Tamás/0000-0002-2643-0661; Levi-Kalisman, Yael/0000-0002-2764-2738; Kellermayer, Miklós/0000-0002-5553-6553} } @misc{MTMT:34044110, title = {New insights into the structure of Comirnaty Covid-19 vaccine: A theory on soft nanoparticles with mRNA-lipid supercoils stabilized by hydrogen bonds}, url = {https://m2.mtmt.hu/api/publication/34044110}, author = {Szebeni, János and Kiss, Bálint and Tamás, Bozó and Keren, Turjeman and Yael, Levi-Kalisman and Yechezkel, Barenholz and Kellermayer, Miklós}, unique-id = {34044110}, abstract = {Despite the worldwide success of mRNA-LNP Covid-19 vaccines, the nanoscale structure of these formulations is still poorly understood. To fill this gap, we used a combination of atomic force microscopy (AFM), dynamic light scattering (DLS), transmission electron microscopy (TEM), cryogenic transmission electron microscopy (cryo-TEM) and the determination of LNP pH gradient to analyze the nanoparticles (NPs) in BNT162b2 (Comirnaty), comparing it with the well characterized pegylated liposomal doxorubicin (Doxil). Comirnaty NPs had similar size to Doxil, however, unlike Doxil liposomes, wherein the stable ammonium and pH gradient enables accumulation of 14C-methylamine in the intraliposomal aqueous phase, Comirnaty LNPs lack such pH gradient in spite of the fact that the pH 4, at which LNPs are prepared, is raised to pH 7.2 after loading of the mRNA. Mechanical manipulation of Comirnaty NPs with AFM revealed soft, compliant structures. The sawtooth-like force transitions seen during cantilever retraction implies that molecular strands, corresponding to mRNA, can be pulled out of NPs, and the process is accompanied by stepwise rupture of mRNA-lipid bonds. Unlike Doxil, cryo-TEM of Comirnaty NPs revealed a granular, solid core enclosed by mono- and bilayers. Negative staining TEM shows 2-5 nm electron-dense spots in the liposom’s interior that are aligned into strings, semicircles, or labyrinth-like networks, which may imply crosslink-stabilized supercoils. The neutral intra-LNP core questions the dominance of ionic interactions holding together this scaffold, raising the alternative possibility of hydrogen bonding between the mRNA and the lipids. Such interaction, described previously for another mRNA/lipid complex, is consistent with the steric structure of ionizable lipid in Comirnaty, ALC-0315, displaying free =O and -OH groups. It is hypothesized that the latter groups can get into steric positions that enable hydrogen bonding with the nitrogenous bases in the mRNA. These newly recognized structural features of mRNA-LNP may be important for the vaccine’s efficacy.Competing Interest StatementThe authors have declared no competing interest.}, year = {2022}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553} } @article{MTMT:33119125, title = {Imaging the Infection Cycle of T7 at the Single Virion Level}, url = {https://m2.mtmt.hu/api/publication/33119125}, author = {Kiss, Bálint and Kiss, Luca Annamária and Lohinai, Zsombor Dávid and Mudra, Dorottya Mária and Tordai, Hedvig and Herényi, Levente and Csik, Gabriella and Kellermayer, Miklós}, doi = {10.3390/ijms231911252}, journal-iso = {INT J MOL SCI}, journal = {INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES}, volume = {23}, unique-id = {33119125}, issn = {1661-6596}, abstract = {T7 phages are E. coli-infecting viruses that find and invade their target with high specificity and efficiency. The exact molecular mechanisms of the T7 infection cycle are yet unclear. As the infection involves mechanical events, single-particle methods are to be employed to alleviate the problems of ensemble averaging. Here we used TIRF microscopy to uncover the spatial dynamics of the target recognition and binding by individual T7 phage particles. In the initial phase, T7 virions bound reversibly to the bacterial membrane via two-dimensional diffusive exploration. Stable bacteriophage anchoring was achieved by tail-fiber complex to receptor binding which could be observed in detail by atomic force microscopy (AFM) under aqueous buffer conditions. The six anchored fibers of a given T7 phage-displayed isotropic spatial orientation. The viral infection led to the onset of an irreversible structural program in the host which occurred in three distinct steps. First, bacterial cell surface roughness, as monitored by AFM, increased progressively. Second, membrane blebs formed on the minute time scale (average ~5 min) as observed by phase-contrast microscopy. Finally, the host cell was lysed in a violent and explosive process that was followed by the quick release and dispersion of the phage progeny. DNA ejection from T7 could be evoked in vitro by photothermal excitation, which revealed that genome release is mechanically controlled to prevent premature delivery of host-lysis genes. The single-particle approach employed here thus provided an unprecedented insight into the details of the complete viral cycle.}, keywords = {AFM; atomic force microscopy (AFM); total internal reflection fluorescence (TIRF); TIRF; bacterial lysis; CC single-particle imaging}, year = {2022}, eissn = {1422-0067}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Lohinai, Zsombor Dávid/0000-0003-0135-6028; Tordai, Hedvig/0000-0002-0875-5569; Herényi, Levente/0000-0003-0535-0256; Csik, Gabriella/0000-0001-8464-2534; Kellermayer, Miklós/0000-0002-5553-6553} } @CONFERENCE{MTMT:33029705, title = {Porphyrin binding by DNA as a function of ionic strength and chain mechanics}, url = {https://m2.mtmt.hu/api/publication/33029705}, author = {Kretzer, Balázs Dávid and Herényi, Levente and Csik, Gabriella and Kiss, Bálint and Kellermayer, Miklós}, booktitle = {PhD Scientific Days 2022}, unique-id = {33029705}, year = {2022}, pages = {1}, orcid-numbers = {Herényi, Levente/0000-0003-0535-0256; Csik, Gabriella/0000-0001-8464-2534; Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553} } @article{MTMT:32853652, title = {Structure, dynamics and nanomechanics of wild-type and alpha-variant SARS-CoV-2 virions}, url = {https://m2.mtmt.hu/api/publication/32853652}, author = {Mudra, Dorottya Mária and Kiss, Bálint and Kis, Zoltán and Pályi, Bernadett and Kellermayer, Miklós}, doi = {10.1016/j.bpj.2021.11.683}, journal-iso = {BIOPHYS J}, journal = {BIOPHYSICAL JOURNAL}, volume = {121}, unique-id = {32853652}, issn = {0006-3495}, year = {2022}, eissn = {1542-0086}, pages = {419a-419a}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553} } @article{MTMT:32853643, title = {Nanomechanics combined with HDX reveals allosteric drug binding sites of CFTR NBD1}, url = {https://m2.mtmt.hu/api/publication/32853643}, author = {Padányi, Rita and Farkas, Bianka Vivien and Tordai, Hedvig and Kiss, Bálint and Grubmüller, Helmut and Soya, Naoto and Lukács, Gergely L. and Kellermayer, Miklós and Hegedűs, Tamás}, doi = {10.1016/j.csbj.2022.05.036}, journal-iso = {CSBJ}, journal = {COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL}, volume = {20}, unique-id = {32853643}, issn = {2001-0370}, abstract = {Cystic fibrosis (CF) is a frequent genetic disease in Caucasians that is caused by the deletion of F508 (DF508) in the nucleotide binding domain 1 (NBD1) of the CF transmembrane conductance regulator (CFTR). The DF508 compromises the folding energetics of the NBD1, as well as the folding of three other CFTR domains. Combination of FDA approved corrector molecules can efficiently but incompletely rescue the DF508-CFTR folding and stability defect. Thus, new pharmacophores that would reinstate the wildtype-like conformational stability of the DF508-NBD1 would be highly beneficial. The most prominent molecule, 5-bromoindole-3-acetic acid (BIA) that can thermally stabilize the NBD1 has low potency and efficacy. To gain insights into the NBD1 (un)folding dynamics and BIA binding site localization, we combined molecular dynamics (MD) simulations, atomic force spectroscopy (AFM) and hydrogendeuterium exchange (HDX) experiments. We found that the NBD1 a-subdomain with three adjacent strands from the b-subdomain plays an important role in early folding steps, when crucial non-native interactions are formed via residue F508. Our AFM and HDX experiments showed that BIA associates with this a-core region and increases the resistance of the DF508-NBD1 against mechanical unfolding, a phenomenon that could be exploited in future developments of folding correctors. (c) 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).}, year = {2022}, eissn = {2001-0370}, pages = {2587-2599}, orcid-numbers = {Padányi, Rita/0000-0001-7798-0463; Farkas, Bianka Vivien/0000-0002-0258-6864; Tordai, Hedvig/0000-0002-0875-5569; Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553; Hegedűs, Tamás/0000-0002-0331-9629} } @article{MTMT:32819052, title = {Az új típusú koronavírus nanobiofizikája}, url = {https://m2.mtmt.hu/api/publication/32819052}, author = {Kiss, Bálint and Kis, Zoltán and Palyi, B and Kellermayer, Miklós}, doi = {10.33616/lam.32.013}, journal-iso = {LEGE ART MED}, journal = {LEGE ARTIS MEDICINAE}, volume = {32}, unique-id = {32819052}, issn = {0866-4811}, abstract = {A Covid-19-pandémia végigsöpört az egész világon, soha nem látott megterhelést okozva egészségügyi rendszereinkben, és kihívások elé állította a biomedicinális kutatást, hogy a járványra mielőbb megfelelő válaszokat adjunk. A modern „egy partikulum” biofizikai módszerek különleges bepillantást engednek a járvány okozója, a SARSCoV- 2 tulajdonságaiba. A vírus tüske fehérjékből álló koronaszerű réteget hordoz a felületén, melyeknek fontos szerepet tulajdonítunk a fertőzés folyamatában. Atomi erőmikroszkóp segítségével sikerült feltárnunk a natív virionok topográfiai szerkezetét és mechanikai tulajdonságait. A tüskefehérjék, rugalmasságuk és mozgékonyságuk révén, dinamikus felületet alkotnak. A virionok meglepően ellenállóak a mechanikai összenyomással szemben, és szerkezetük képes helyreállni a mechanikai behatást követően. A vírus globális szerkezete ellenáll a hőhatásnak, de a hőmérséklet fokozásával a tüskefehérjék disszociálódnak a felületről. A SARS-CoV-2 mechanikai és dinamikai sajátosságai hozzájárulnak fertőző képességéhez. Az alkalmazott „egy partikulum” biofizikai módszerek fontos szerepet játszhatnak az egyre gyakoribbá váló vírusfertőzések megértésében és legyőzésében.}, keywords = {COVID-19; atomi erőmikroszkópia; nanoindentáció; erőspektroszkópia; mechanikai ellenálló képesség; hőstabilitás}, year = {2022}, eissn = {2063-4161}, pages = {147-152}, orcid-numbers = {Kiss, Bálint/0000-0002-1595-0426; Kellermayer, Miklós/0000-0002-5553-6553} }