TY - THES AU - Vásárhelyi, Bálint Márk TI - A PÉCELI KÖR. Evangéliumi mozgalom az 1920-as évek református egyházában TS - Evangéliumi mozgalom az 1920-as évek református egyházában PY - 2025 SP - 179 DO - 10.24395/KRE.2025.002 UR - https://m2.mtmt.hu/api/publication/35649639 ID - 35649639 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Daruka, Lejla AU - Czikkely, Márton Simon AU - Szili, Petra AU - Farkas, Zoltán AU - Balogh, Dávid AU - Grézal, Gábor AU - Maharramov, Elvin AU - Vu, Thu-Hien AU - Sipos, Levente AU - Juhász, Szilvia AU - Dunai, Anett AU - Daraba, Andreea AU - Számel, Mónika AU - Sári, Tóbiás AU - Stirling, Tamás AU - Vásárhelyi, Bálint Márk AU - Ari, Eszter AU - Christodoulou, Chryso AU - Manczinger, Máté AU - Enyedi, Márton Zsolt AU - Jaksa, Gábor AU - Kovács, Károly AU - van Houte, Stineke AU - Pursey, Elizabeth AU - Pintér, Lajos AU - Haracska, Lajos AU - Kintses, Bálint AU - Papp, Balázs AU - Pál, Csaba TI - ESKAPE pathogens rapidly develop resistance against antibiotics in development in vitro JF - NATURE MICROBIOLOGY J2 - NAT MICROBIOL VL - 10 PY - 2025 IS - 2 SP - 313 EP - 331 PG - 19 SN - 2058-5276 DO - 10.1038/s41564-024-01891-8 UR - https://m2.mtmt.hu/api/publication/35685373 ID - 35685373 N1 - Funding Agency and Grant Number: European Research Council; National Laboratory of Biotechnology Grant [2022-2.1.1-NL-2022-00008]; National Research Development and Innovation Office 'Elvonal' Programme KKP [126506]; National Research, Development and Innovation Office [K146323, FK-135245, RRF-2.3.1-21-2022-00015, TKP-31-8/PALY-2021]; National Research, Development and Innovation Office 'Elvonal' program KKP [KH125616]; National Laboratory for Health Security [RRF-2.3.1-21-2022-00006]; European Union [739593]; Janos Bolyai Research Fellowship from the Hungarian Academy of Sciences [BO/352/20, bo_656_20]; New National Excellence Program of the Ministry of Human Capacities; Proof-of-Concept grant of the Eoetvoes Lorand Research Network [ELKH-PoC-2022-034]; New National Excellence Program of the Ministry for Culture and Innovation [UNKP-22-2-SZTE-220, UNKP-23-3-SZTE-272]; National Academy of Scientist Education under the sponsorship of the Hungarian Ministry of Culture and Innovation; University Research Scholarship Program Grant under the sponsorship of the Hungarian Ministry of Culture and Innovation [EKOEP-KDP-24-SZTE-13]; National Research, Development and Innovation Office, Hungary (NKFIH) [131839, FK-142312, FK-131961]; National Research, Development and Innovation Office, Hungary (NKFIH) KIM NKFIA [TKP-2021-EGA-05, 2022-2.1.1-NL-2022-00005, H2020-WIDESPREA-01-2016-2017-TeamingPhase2, 739593-HCEMM]; New National Excellence Program of the Ministry of Human Capacities Bolyai+ [UNKP-22-5-SZTE-578-Bolyai+]; Lister Institute for Preventative Medicine; [ERC-2023-ADG 101142626]; [UNKP-20-5-SZTE-654]; [UNKP-21-5-SZTE-579] Funding text: We thank A. Kobl for her help with illustrations in Extended Data Fig. 1. This work was supported by The European Research Council ERC-2023-ADG 101142626 FutureAntibiotics (C.P.); The National Laboratory of Biotechnology Grant 2022-2.1.1-NL-2022-00008 (C.P., B.K. and B.P.); National Research Development and Innovation Office 'Elvonal' Programme KKP 126506 (C.P.); National Research, Development and Innovation Office K146323 (C.P.); National Research, Development and Innovation Office 'Elvonal' program KKP KH125616 (B.P.); The National Laboratory for Health Security RRF-2.3.1-21-2022-00006 (B.P.); The European Union's Horizon 2020 research and innovation programme under grant agreement number 739593 (B.K., B.P. and M.M.); National Research, Development and Innovation Office grant FK-135245 (B.K.); Janos Bolyai Research Fellowship from the Hungarian Academy of Sciences (BO/352/20; B.K.); New National Excellence Program of the Ministry of Human Capacities (UNKP-20-5-SZTE-654 and UNKP-21- 5-SZTE-579; B.K.); Proof-of-Concept grant of the Eoetvoes Lorand Research Network (ELKH-PoC-2022-034; B.K.); The New National Excellence Program of the Ministry for Culture and Innovation (UNKP-22-2-SZTE-220 and UNKP-23-3-SZTE-272; M.S.C.); The National Academy of Scientist Education under the sponsorship of the Hungarian Ministry of Culture and Innovation (M.S.C.); University Research Scholarship Program Grant under the sponsorship of the Hungarian Ministry of Culture and Innovation (EKOEP-KDP-24-SZTE-13; M.S.C.); The National Research, Development and Innovation Office, Hungary (NKFIH) grant PD, grant number 131839 (E.A.); The National Research, Development and Innovation Office, Hungary (NKFIH) grant FK-142312 (M.M.); The National Research, Development and Innovation Office, Hungary (NKFIH) KIM NKFIA TKP-2021-EGA-05 (S.J.); The National Research, Development and Innovation Office, Hungary (NKFIH) KIM NKFIA 2022-2.1.1-NL-2022-00005 (S.J.); H2020-WIDESPREA-01-2016-2017-TeamingPhase2, GA:739593-HCEMM (S.J.); The National Research, Development and Innovation Office, Hungary (NKFIH) grant FK-131961 (S.J.); The New National Excellence Program of the Ministry of Human Capacities Bolyai+, UNKP-22-5-SZTE-578-Bolyai+ (S.J.); The Janos Bolyai Research Fellowship from the Hungarian Academy of Sciences bo_656_20 (S.J.); The Lister Institute for Preventative Medicine (S.v.H.); and The National Research, Development and Innovation Office (PharmaLab, RRF-2.3.1-21-2022-00015 and TKP-31-8/PALY-2021; L.H.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. LA - English DB - MTMT ER - TY - BOOK AU - Vásárhelyi, Bálint Márk AU - Vezsenyi, Péter TI - Két imádság PB - Ébredés Alapítvány CY - Sárbogárd PY - 2024 SN - 9786156536075 UR - https://m2.mtmt.hu/api/publication/35063426 ID - 35063426 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Koncz, Mihály AU - Stirling, Tamás AU - Hadj Mehdi, Hiba AU - Méhi, Orsolya Katinka AU - Eszenyi, Bálint Dénes AU - Asbóth, András AU - Apjok, Gábor AU - Tóth, Ákos AU - Orosz, László AU - Vásárhelyi, Bálint Márk AU - Ari, Eszter AU - Daruka, Lejla AU - Polgár, Tamás Ferenc AU - Schneider, György AU - Zalokh, Sif Aldin AU - Számel, Mónika AU - Fekete, Gergely AU - Bohár, Balázs AU - Nagy Varga, Karolina AU - Visnyovszki, Ádám AU - Székely, Edit AU - Licker, Monica-Sorina AU - Izmendi, Oana AU - Costache, Carmen AU - Gajic, Ina AU - Lukovic, Bojana AU - Molnár, Szabolcs AU - Szőcs-Gazdi, Uzonka Orsolya AU - Bozai, Csilla AU - Indreas, Marina AU - Kristóf, Katalin AU - Van der Henst, Charles AU - Breine, Anke AU - Pál, Csaba AU - Papp, Balázs AU - Kintses, Bálint TI - Genomic surveillance as a scalable framework for precision phage therapy against antibiotic-resistant pathogens JF - CELL J2 - CELL VL - 187 PY - 2024 IS - 21 SP - 5901 EP - 5918.e28 PG - 47 SN - 0092-8674 DO - 10.1016/j.cell.2024.09.009 UR - https://m2.mtmt.hu/api/publication/35422693 ID - 35422693 AB - Phage therapy is gaining increasing interest in the fight against critically antibiotic-resistant nosocomial pathogens. However, the narrow host range of bacteriophages hampers the development of broadly effective phage therapeutics and demands precision approaches. Here, we combine large-scale phylogeographic analysis with high-throughput phage typing to guide the development of precision phage cocktails targeting carbapenem-resistant Acinetobacter baumannii, a top-priority pathogen. Our analysis reveals that a few strain types dominate infections in each world region, with their geographical distribution remaining stable within 6 years. As we demonstrate in Eastern Europe, this spatiotemporal distribution enables preemptive preparation of region-specific phage collections that target most local infections. Finally, we showcase the efficacy of phage cocktails against prevalent strain types using in vitro and animal infection models. Ultimately, genomic surveillance identifies patients benefiting from the same phages across geographical scales, thus providing a scalable framework for precision phage therapy. LA - English DB - MTMT ER - TY - JOUR AU - Apjok, Gábor AU - Számel, Mónika AU - Christodoulou, Chryso AU - Seregi, Viktória AU - Vásárhelyi, Bálint Márk AU - Stirling, Tamás AU - Eszenyi, Bálint Dénes AU - Sári, Tóbiás AU - Vidovics, Fanni AU - Nagrand, Erika AU - Kovács, Dorina AU - Szili, Petra AU - Lantos, Ildikó Ilona AU - Méhi, Orsolya Katinka AU - Jangir, Pramod Kumar AU - Herczeg, Róbert AU - Gálik, Bence AU - Urbán, Péter AU - Gyenesei, Attila AU - Draskovits, Gábor AU - Nyerges, Ákos AU - Fekete, Gergely AU - Bodai, László AU - Zsindely, Nóra AU - Dénes, Béla AU - Yosef, Ido AU - Qimron, Udi AU - Papp, Balázs AU - Pál, Csaba AU - Kintses, Bálint TI - Characterization of antibiotic resistomes by reprogrammed bacteriophage-enabled functional metagenomics in clinical strains JF - NATURE MICROBIOLOGY J2 - NAT MICROBIOL VL - 8 PY - 2023 IS - 3 SP - 410 EP - 423 PG - 14 SN - 2058-5276 DO - 10.1038/s41564-023-01320-2 UR - https://m2.mtmt.hu/api/publication/33634821 ID - 33634821 N1 - Funding Agency and Grant Number: National Laboratory of Biotechnology Grants [NKFIH-871-3/2020, 2022-2.1.1-NL-2022-00008]; European Union [754432]; European Research Council [648364, 862077]; National Research, Development and Innovation Office grant [FK-135245, FK-124254]; National Research, Development and Innovation Office; Ministry for Innovation and Technology [KKP 129814, 126506]; New National Excellence Program of the Ministry of Human Capacities [UNKP-20-5-SZTE-654, UNKP-21-5-SZTE-579]; New National Excellence Program of the Ministry for Innovation and Technology - National Research, Development and Innovation Fund [UNKP-20-3 -SZTE-452]; Doctoral Student Scholarship Program of the Co-Operative Doctoral Program of the Ministry of Innovation and Technology - National Research, Development and Innovation Fund [KDP-17-4/ PALY-2021, C992025]; European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant [754432]; Polish Ministry of Science and Higher Education; National Academy of Scientist Education Program of the National Biomedical Foundation under Hungarian Ministry of Culture and Innovation; National Laboratory for Health Security [RRF-2.3.1-212022-00006, GINOP-2.3.2-15-2016-00014, GINOP-2.3.2-15-2016-00020, GINOP-2.3.2-15-2016-00035]; Janos Bolyai Research Fellowship from the Hungarian Academy of Sciences [BO/352/20, BO/00303/19/8]; [GINOP-2.3.4-15-2020-00010]; [GINOP-2.3.1-20-2020-00001]; [BECOMING-2019-1-HU01-KA203-061251] Funding text: We thank D. Verma from the Department of Microbiology and B. Bhimrao of Ambedkar University, Lucknow, India for help with soil sample collection and NBA approval. This work was supported by National Laboratory of Biotechnology Grants NKFIH-871-3/2020 and 2022-2.1.1-NL-2022-00008 (B.K. and C.P.); the European Union's Horizon 2020 research and innovation programme under grant agreement no. 739593 (B.P. and B.K.); the European Research Council H2020-ERC-2014-CoG 648364-Resistance Evolution (C.P.) and H2020-ERC-2019-PoC 862077-Aware (C.P.); National Research, Development and Innovation Office grant FK-135245 (B.K.) and FK-124254 (O.M.); the National Research, Development and Innovation Office and the Ministry for Innovation and Technology under the `Frontline' Programme KKP 129814 and 126506 (B.P. and C.P.); the National Laboratory for Health Security RRF-2.3.1-212022-00006 (B.P.), GINOP-2.3.2-15-2016-00014 (EVOMER, C.P. and B.P.), GINOP-2.3.2-15-2016-00020 (MolMedEx TUMORDNS, C.P.), GINOP-2.3.2-15-2016-00035 (N.Z.); a Janos Bolyai Research Fellowship from the Hungarian Academy of Sciences (BO/352/20 (B.K.), BO/00303/19/8 (O.M)); New National Excellence Program of the Ministry of Human Capacities (UNKP-20-5-SZTE-654 and UNKP-215-SZTE-579, B.K.); New National Excellence Program of the Ministry for Innovation and Technology funded by the National Research, Development and Innovation Fund (UNKP-20-3 -SZTE-452, G.A.); the Doctoral Student Scholarship Program of the Co-Operative Doctoral Program of the Ministry of Innovation and Technology financed by the National Research, Development and Innovation Fund (KDP-17-4/ PALY-2021, C992025, M.S.). R.H., B.G., P.U. and A.G. were supported by GINOP-2.3.4-15-2020-00010, GINOP-2.3.1-20-2020-00001, BECOMING-2019-1-HU01-KA203-061251, the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement no. 754432 and the Polish Ministry of Science and Higher Education, from the financial resources for science in 2018-2023. This research work was conducted with the support of the National Academy of Scientist Education Program of the National Biomedical Foundation under the sponsorship of the Hungarian Ministry of Culture and Innovation (D.K.). AB - Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities. LA - English DB - MTMT ER - TY - JOUR AU - Imre, Gergely AU - Takács, Bertalan Vilmos AU - Czipa, Erik AU - Drubi, Andrea AU - Jaksa, Gábor AU - Latinovics, Dóra AU - Nagy, Andrea AU - Karkas, Réka AU - Hudoba, Liza AU - Vásárhelyi, Bálint Márk AU - Pankotai-Bodó, Gabriella AU - Blastyák, András AU - Hegedűs, Zoltán AU - Germán, Péter AU - Bálint, Balázs AU - Abdullah, Khaldoon Sadiq Ahmed AU - Kopasz, Anna Georgina AU - Kovács, Anita Kármen AU - Nagy, László AU - Sükösd, Farkas AU - Pintér, Lajos AU - Rülicke, Thomas AU - Barta, Endre AU - Nagy, István AU - Haracska, Lajos AU - Mátés, Lajos TI - Prolonged activity of the transposase helper may raise safety concerns during DNA transposon-based gene therapy JF - MOLECULAR THERAPY-METHODS AND CLINICAL DEVELOPMENT J2 - MOL THER-METH CLIN D VL - 29 PY - 2023 SP - 145 EP - 159 PG - 15 SN - 2329-0501 DO - 10.1016/j.omtm.2023.03.003 UR - https://m2.mtmt.hu/api/publication/33708483 ID - 33708483 AB - DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the piggyBac and Sleeping Beauty systems—the only DNA transposons currently employed in clinical trials—during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of piggyBac integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of Sleeping Beauty-generated integrations is closer to random. We also revealed that the piggyBac transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window. LA - English DB - MTMT ER - TY - GEN AU - Daruka, Lejla AU - Márton, Simon Czikkely AU - Petra, Szili AU - Farkas, Zoltán AU - Dávid, Balogh AU - Elvin, Maharramov AU - Thu-Hien, Vu AU - Levente, Sipos AU - Botond, Dávid Vincze AU - Gábor, Grézal AU - Szilvia, Juhász AU - Anett, Dunai AU - Andreea, Daraba AU - Mónika, Számel AU - Tóbiás, Sári AU - Tamás, Stirling AU - Vásárhelyi, Bálint Márk AU - Ari, Eszter AU - Chryso, Christodoulou AU - Máté, Manczinger AU - Márton, Zsolt Enyedi AU - Gábor, Jaksa AU - Stineke, van Houte AU - Elizabeth, Pursey AU - Csaba, Gergő Papp AU - Zóra, Szilovics AU - Lajos, Pintér AU - Lajos, Haracska AU - Attila, Gácser AU - Bálint, Kintses AU - Balázs, Papp AU - Csaba, Pál TI - Antibiotics of the future are prone to resistance in Gram-negative pathogens PY - 2023 UR - https://m2.mtmt.hu/api/publication/34158052 ID - 34158052 LA - English DB - MTMT ER - TY - CHAP AU - Vásárhelyi, Bálint Márk ED - Kiss, Réka ED - Lányi, Gábor János TI - A Péceli Kör és az egyházi egyesületek T2 - Hagyomány, Identitás, Történelem 2022 PB - Károli Gáspár Református Egyetem Hittudományi Kar Egyháztörténeti Kutatóintézet CY - Budapest T3 - Reformáció Öröksége Könyvek, ISSN 2676-9824 ; 10. T3 - Hagyomány, identitás, történelem, ISSN 2677-0334 PY - 2023 SP - 533 EP - 544 PG - 12 DO - 10.61376/hit.2022.vasarhelyi.37 UR - https://m2.mtmt.hu/api/publication/34257965 ID - 34257965 AB - After World War I, the Hungarian Reformed Church had to redefine her identity and find the ways of her survival and renewal. This process began in the 19th century already, mainly in the sphere of different associations. The inner mission wanted to change the church model from folk church to confessional church, and tried to revitalize not only the church, but also the lives of the church members according to the gospel of Christ. The Pécel Circle fits into this line of movements. This study explores the personal, mental and spiritual connections between the Pécel Circle and the main Protestant associations and movements. LA - Hungarian DB - MTMT ER - TY - BOOK AU - John, Owen ED - Vásárhelyi, Bálint Márk / Translator TI - A bűn megöldöklése PB - Presbiteriánus Kiadó CY - Budapest PY - 2023 SN - 9786155063251 UR - https://m2.mtmt.hu/api/publication/35063429 ID - 35063429 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Ari, Eszter AU - Vásárhelyi, Bálint Márk AU - Kemenesi, Gábor AU - Tóth, Gábor Endre AU - Zana, Brigitta AU - Somogyi, Balázs Antal AU - Lanszki, Zsófia AU - Röst, Gergely AU - Jakab, Ferenc AU - Papp, Balázs AU - Kintses, Bálint TI - A Single Early Introduction Governed Viral Diversity in the Second Wave of SARS-CoV-2 Epidemic in Hungary JF - VIRUS EVOLUTION J2 - VIRUS EVOL VL - 8 PY - 2022 IS - 2 PG - 12 SN - 2057-1577 DO - 10.1093/ve/veac069 UR - https://m2.mtmt.hu/api/publication/33040340 ID - 33040340 AB - Retrospective evaluation of past waves of the SARS-CoV-2 epidemic is key for designing optimal interventions against future waves and novel pandemics. Here we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a two-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity. LA - English DB - MTMT ER -