TY - JOUR AU - Siebert, M.R. AU - Kwok, L.A. AU - Johansson, J. AU - Jha, S.W. AU - Blondin, S. AU - Dessart, L. AU - Foley, R.J. AU - Hillier, D.J. AU - Larison, C. AU - Pakmor, R. AU - Temim, T. AU - Andrews, J.E. AU - Auchettl, K. AU - Badenes, C. AU - Barna, Barnabás AU - Bostroem, K.A. AU - Brenner, Newman M.J. AU - Brink, T.G. AU - Bustamante-Rosell, M.J. AU - Camacho-Neves, Y. AU - Clocchiatti, A. AU - Coulter, D.A. AU - Davis, K.W. AU - Deckers, M. AU - Dimitriadis, G. AU - Dong, Y. AU - Farah, J. AU - Filippenko, A.V. AU - Flörs, A. AU - Fox, O.D. AU - Garnavich, P. AU - Gonzalez, E.P. AU - Graur, O. AU - Hambsch, F.-J. AU - Hosseinzadeh, G. AU - Howell, D.A. AU - Hughes, J.P. AU - Kerzendorf, W.E. AU - Le, Saux X.K. AU - Maeda, K. AU - Maguire, K. AU - McCully, C. AU - Mihalenko, C. AU - Newsome, M. AU - O'Brien, J.T. AU - Pearson, J. AU - Pellegrino, C. AU - Pierel, J.D.R. AU - Polin, A. AU - Rest, A. AU - Rojas-Bravo, C. AU - Sand, D.J. AU - Schwab, M. AU - Shahbandeh, M. AU - Shrestha, M. AU - Smith, N. AU - Strolger, L.-G. AU - Szalai, Tamás AU - Taggart, K. AU - Terreran, G. AU - Terwel, J.H. AU - Tinyanont, S. AU - Valenti, S. AU - Vinkó, József AU - Wheeler, J.C. AU - Yang, Y. AU - Zheng, W. AU - Ashall, C. AU - DerKacy, J.M. AU - Galbany, L. AU - Hoeflich, P. AU - Hsiao, E. AU - de, Jaeger T. AU - Lu, J. AU - Maund, J. AU - Medler, K. AU - Morrell, N. AU - Shappee, B.J. AU - Stritzinger, M. AU - Suntzeff, N. AU - Tucker, M. AU - Wang, L. TI - Ground-based and JWST Observations of SN 2022pul. I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 960 PY - 2024 IS - 1 SN - 1538-4357 DO - 10.3847/1538-4357/ad0975 UR - https://m2.mtmt.hu/api/publication/34547808 ID - 34547808 N1 - Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, 21218-2410, MD, United States Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, 08854-8019, NJ, United States Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, Stockholm, SE-106 91, Sweden Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France Institut d'Astrophysique de Paris, CNRS-Sorbonne Université, 98 bis boulevard Arago, Paris, F-75014, France Department of Astronomy and Astrophysics, University of California, Santa Cruz, 95064-1077, CA, United States Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, 15260, PA, United States Max-Planck Institute for Astrophysics, Garching, Germany Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08540-7219, NJ, United States Gemini Observatory, NSF's NOIRLab, 670 North A'ohoku Place, Hilo, 96720-2700, HI, United States School of Physics, The University of Melbourne, Parkville, 3010, VIC, Australia Department of Experimental Physics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, 85721-0065, AZ, United States Department of Astronomy, University of California, Berkeley, 94720-3411, CA, United States Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile Millennium Institute of Astrophysics, Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland Department of Physics and Astronomy, University of California, Davis, 1 Shields Avenue, Davis, 95616-5270, CA, United States Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, 93117-5575, CA, United States Department of Physics, University of California, Santa Barbara, 93106-9530, CA, United States GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt, D-64291, Germany Department of Physics and Astronomy, University of Notre Dame, Notre Dame, 46556, IN, United States Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, United Kingdom Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, 10024-5192, NY, United States Vereniging Voor Sterrenkunde (VVS), Oostmeers 122 C, Brugge, B-8000, Belgium AAVSO, 185 Alewife Brook Parkway, Suite 410, Cambridge, 02138, MA, United States Groupe Européen d'Observations Stellaires (GEOS), 23 Parc de Levesville, Bailleau-l'Évêque, F-28300, France Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne (BAV), Munsterdamm 90, Berlin, D-12169, Germany Department of Physics and Astronomy, Michigan State University, East Lansing, 48824, MI, United States Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, 48824, MI, United States Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia Observatories of the Carnegie Institute for Science, 813 Santa Barbara Street, Pasadena, 91101-1232, CA, United States TAPIR, Walter Burke Institute for Theoretical Physics, 350-17, Caltech, Pasadena, 91125, CA, United States Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, 21218, MD, United States ELKH-SZTE Stellar Astrophysics Research Group, Szegedi út, Kt. 766, Baja, 6500, Hungary Isaac Newton Group (ING), Apt. de correos 321, Santa Cruz de La Palma, E-38700, Spain National Astronomical Research Institute of Thailand, 260 Moo 4, Donkaew, Maerim, Chiang Mai, 50180, Thailand Konkoly Observatory, Research Centre for Astronomy and Earth Sciences (CSFK), MTA Center of Excellence, Konkoly-Thege Miklós út 15-17, Budapest, 1121, Hungary ELTE Eötvös Loránd University, Institute of Physics and Astronomy, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary Department of Astronomy, University of Texas at Austin, Austin, 78712-1205, TX, United States Department of Physics, Virginia Tech, Blacksburg, 24061, VA, United States Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, Barcelona, E-08193, Spain Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, E-08034, Spain Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, 32306-4350, FL, United States LPNHE, CNRS/IN2P3, Sorbonne Université, Université Paris Cité, Laboratoire de Physique Nucléaire et de Hautes Énergies, Paris, F-75005, France Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, United Kingdom Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, 96822-1839, HI, United States Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, DK-8000, Denmark Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, 77843, TX, United States George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, College Station, 77843, TX, United States Center for Cosmology and Astroparticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, 43215, OH, United States Export Date: 31 January 2024; Cited By: 0 LA - English DB - MTMT ER - TY - JOUR AU - Vermot, P. AU - Barna, Barnabás AU - Ehlerova, S. AU - Morris, M. R. AU - Palous, J. AU - Wunsch, R. TI - Ionized regions in the central arcsecond of NGC 1068 YJHK spatially resolved spectroscopy JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 678 PY - 2023 PG - 23 SN - 0004-6361 DO - 10.1051/0004-6361/202347227 UR - https://m2.mtmt.hu/api/publication/34672842 ID - 34672842 LA - English DB - MTMT ER - TY - JOUR AU - Ertini, K. AU - Folatelli, G. AU - Martinez, L. AU - Bersten, M. C. AU - Anderson, J. P. AU - Ashall, C. AU - Baron, E. AU - Bose, S. AU - Brown, P. J. AU - Burns, C. AU - DerKacy, J. M. AU - Ferrari, L. AU - Galbany, L. AU - Hsiao, E. AU - Kumar, S. AU - Lu, J. AU - Mazzali, P. AU - Morrell, N. AU - Orellana, M. AU - Pessi, P. J. AU - Phillips, M. M. AU - Piro, A. L. AU - Polin, A. AU - Shahbandeh, M. AU - Shappee, B. J. AU - Stritzinger, M. AU - Suntzeff, N. B. AU - Tucker, M. AU - Elias-Rosa, N. AU - Kuncarayakti, H. AU - Gutiérrez, C. P. AU - Kozyreva, A. AU - Müller-Bravo, T. E. AU - Chen, T. -W. AU - Hinkle, J. T. AU - Payne, A. V. AU - Székely, Péter AU - Szalai, Tamás AU - Barna, Barnabás AU - Könyves-Tóth, Réka AU - Bánhidi, D. AU - Bíró, I. B. AU - Csányi, István AU - Kriskovics, Levente AU - Pál, András AU - Szabó, Zs AU - Szakáts, Róbert AU - Vida, Krisztián AU - Vinkó, József AU - Gromadzki, M. AU - Harvey, L. AU - Nicholl, M. AU - Paraskeva, E. AU - Young, D. R. AU - Englert, B. TI - SN 2021gno: a calcium-rich transient with double-peaked light curves JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 526 PY - 2023 IS - 1 SP - 279 EP - 298 PG - 20 SN - 0035-8711 DO - 10.1093/mnras/stad2705 UR - https://m2.mtmt.hu/api/publication/34232492 ID - 34232492 N1 - Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, La Plata, B1900FWA, Argentina Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP, Paseo del Bosque S/N, La Plata, B1900FWA, Argentina Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Chiba, Kashiwa, 277-8583, Japan Universidad Nacional de Río Negro. Sede Andina, Mitre 630, Bariloche, 8400, Argentina European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Vitacura, Santiago, 8320000, Chile Millennium Institute of Astrophysics MAS, Nuncio Monsenor Sotero Sanz 100, Off. 104, Providencia, Santiago, 8320000, Chile Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Norman, OK 73019-2061, United States Hamburger Sternwarte, Gojenbergsweg 112, Hamburg, D-21029, Germany Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, United States Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, United States Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77845, United States The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101, United States Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, Barcelona, E-08193, Spain Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, E-08034, Spain Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL 32306, United States Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str 1, Garching, D-85748, Germany Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, 1700000, Chile Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Capital FederalC1425FQD, Argentina TAPIR, Walter Burke Institute for Theoretical Physics, 350-17, Caltech, Pasadena, CA 91125, United States Institute for Astronomy, University of Hawai'i at Manoa, 2680 Woodlawn Dr, Honolulu, HI 96822, United States Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, DK-8000, Denmark INAF - Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, Padova, I-35122, Italy Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku, FI-20014, Finland Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, Heidelberg, D-69118, Germany The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, Stockholm, SE-10691, Sweden Department of Experimental Physics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary ELKH-SZTE Stellar Astrophysics Research Group, Szegediút, Kt. 766, Baja, H-6500, Hungary Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, Budapest, H-1121, Hungary CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest, H-1121, Hungary Gothard Astrophysical Observatory, ELTE Eötvös Loránd University, Szombathely, H-9400, Hungary Baja Astronomical Observatory of University of Szeged, Szegedi út, Kt. 766, Baja, H-6500, Hungary Eötvös Loránd University, Department of Astronomy, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Institute of Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02109, United States Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, D-53121, Germany Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, United Kingdom Department of Optics & Quantum Electronics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, Warszawa, PL-00-478, Poland School of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom Department of Physics and Astronomy, University of California, One Shields Avenue, Davis, CA 95616, United States Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom Combate de los Pozos 1028, C1222AAL Ciudad Autónoma de Buenos Aires, Argentina Export Date: 22 March 2024 CODEN: MNRAA Correspondence Address: Ertini, K.; Facultad de Ciencias Astronómicas y Geofísicas, Paseo del Bosque S/N, Argentina; email: keilaertini@gmail.com AB - We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the 'Precision Observations of Infant Supernova Explosions' (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca II] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of $0.8\\, M_\\odot$ and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ~$10^{-2}\\, {\\rm M}_{\\odot }$ with an extension of $1100\\, R_{\\odot }$. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients. LA - English DB - MTMT ER - TY - JOUR AU - Barna, Barnabás AU - Nagy, Andrea AU - Bora, Zs. AU - Czavalinga, Donát Róbert AU - Könyves-Tóth, Réka AU - Szalai, Tamás AU - Székely, Péter AU - Zsíros, Szanna AU - Banhidi, D. AU - Biro, I. B. AU - Csanyi, I. AU - Kriskovics, Levente AU - Pál, András AU - Szabo, Zs. M. AU - Szakáts, Róbert AU - Vida, Krisztián AU - Bodola, Zsófia Réka AU - Vinkó, József TI - Three is the magic number: Distance measurement of NGC 3147 using SN 2021hpr and its siblings JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 677 PY - 2023 PG - 16 SN - 0004-6361 DO - 10.1051/0004-6361/202346395 UR - https://m2.mtmt.hu/api/publication/34221293 ID - 34221293 AB - Context. The nearby spiral galaxy NGC 3147 hosted three Type Ia supernovae (SNe Ia) in the past decades that have been the subjects of intense follow-up observations. Simultaneous analysis of their data provides a unique opportunity for testing different methods of light curve fitting and distance estimation.Aims. The detailed optical follow-up of SN 2021hpr allows us to revise the previous distance estimations to NGC 3147 and compare the widely used light curve fitting algorithms to each other. After the combination of the available and newly published data of SN 2021hpr, its physical properties can also be estimated with higher accuracy.Methods. We present and analyse new BVgriz and Swift photometry of SN 2021hpr to constrain its general physical properties. Together with its siblings, SNe 1997bq and 2008fv, we cross-compared the individual distance estimates of these three SNe given by the Spectral Adaptive Lightcurve Template (SALT) code, and we also checked their consistency with the results from the Multi-Color Light Curve Shape (MLCS) code. The early spectral series of SN 2021hpr was also fit with the radiative spectral code TARDIS to verify the explosion properties and constrain the chemical distribution of the outer ejecta.Results. After combining the distance estimates for the three SNe, the mean distance to their host galaxy, NGC 3127, is 42.5 +/- 1.0 Mpc, which matches with the distance inferred by the most up-to-date light curve fitters, SALT3 and BayeSN. We confirm that SN 2021hpr is a Branch-normal Type Ia SN that ejected -1.12 +/- 0.28 M-circle dot from its progenitor white dwarf and synthesized -0.44 +/- 0.14 M-circle dot of radioactive Ni-56. LA - English DB - MTMT ER - TY - JOUR AU - Camacho-Neves, Yssavo AU - Jha, Saurabh W. AU - Barna, Barnabás AU - Dai, Mi AU - Filippenko, Alexei V. AU - Foley, Ryan J. AU - Hosseinzadeh, Griffin AU - Howell, D. Andrew AU - Johansson, Joel AU - Kelly, Patrick L. AU - Kerzendorf, Wolfgang E. AU - Kwok, Lindsey A. AU - Larison, Conor AU - Magee, Mark R. AU - McCully, Curtis AU - O'Brien, John T. AU - Pan, Yen-Chen AU - Pandya, Viraj AU - Singhal, Jaladh AU - Stahl, Benjamin E. AU - Szalai, Tamás AU - Wieber, Meredith AU - Williamson, Marc TI - Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 951 PY - 2023 IS - 1 PG - 17 SN - 1538-4357 DO - 10.3847/1538-4357/acd558 UR - https://m2.mtmt.hu/api/publication/34116921 ID - 34116921 AB - Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. using TARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ~400-1000 km s-1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away. LA - English DB - MTMT ER - TY - JOUR AU - Singh, Mridweeka AU - Sahu, Devendra. K. AU - Dastidar, Raya AU - Barna, Barnabás AU - Misra, Kuntal AU - Gangopadhyay, Anjasha AU - Howell, D. Andrew AU - Jha, Saurabh W. AU - Im, Hyobin AU - Taggart, Kirsty AU - Andrews, Jennifer AU - Hiramatsu, Daichi AU - Teja, Rishabh Singh AU - Pellegrino, Craig AU - Foley, Ryan J. AU - Joshi, Arti AU - Anupama, G. C. AU - Bostroem, K. Azalee AU - Burke, Jamison AU - Camacho-Neves, Yssavo AU - Dutta, Anirban AU - Kwok, Lindsey A. AU - McCully, Curtis AU - Pan, Yen-Chen AU - Siebert, Matt AU - Srivastav, Shubham AU - Szalai, Tamás AU - Swift, Jonathan J. AU - Yang, Grace AU - Zhou, Henry AU - DiLullo, Nico AU - Scheer, Jackson TI - Observational Properties of a Bright Type lax SN 2018cni and a Faint Type Iax SN 2020kyg JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 953 PY - 2023 IS - 1 PG - 14 SN - 1538-4357 DO - 10.3847/1538-4357/acd559 UR - https://m2.mtmt.hu/api/publication/34116920 ID - 34116920 AB - We present the optical photometric and spectroscopic analysis of two Type Iax supernovae (SNe), 2018cni and 2020kyg. SN 2018cni is a bright Type Iax SN (M V,peak = -17.81 ± 0.21 mag), whereas SN 2020kyg (M V,peak = -14.52 ± 0.21 mag) is a faint one. We derive 56Ni mass of 0.07 and 0.002 M ⊙ and ejecta mass of 0.48 and 0.14 M ⊙ for SNe 2018cni and 2020kyg, respectively. A combined study of the bright and faint Type Iax SNe in R/r-band reveals that the brighter objects tend to have a longer rise time. However, the correlation between the peak luminosity and decline rate shows that bright and faint Type Iax SNe exhibit distinct behavior. Comparison with standard deflagration models suggests that SN 2018cni is consistent with the deflagration of a CO white dwarf, whereas the properties of SN 2020kyg can be better explained by the deflagration of a hybrid CONe white dwarf. The spectral features of both the SNe point to the presence of similar chemical species but with different mass fractions. Our spectral modeling indicates stratification at the outer layers and mixed inner ejecta for both of the SNe. LA - English DB - MTMT ER - TY - JOUR AU - Vermot, P. AU - Palouš, J. AU - Barna, Barnabás AU - Ehlerová, S. AU - Morris, M. R. AU - Wünsch, R. TI - A 3D model for the stellar populations in the nuclei of NGC 1433, NGC 1566, and NGC 1808. NIR photometry, CO absorption lines, and line-of-sight velocity and its dispersion TS - NIR photometry, CO absorption lines, and line-of-sight velocity and its dispersion JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 674 PY - 2023 PG - 16 SN - 0004-6361 DO - 10.1051/0004-6361/202245627 UR - https://m2.mtmt.hu/api/publication/34095108 ID - 34095108 AB - Aims. We aim to characterize the properties of the stellar populations in the central few hundred parsecs of nearby galactic nuclei; specifically their age, mass, and 3D geometry. LA - English DB - MTMT ER - TY - JOUR AU - Kwok, Lindsey A. AU - Jha, Saurabh W. AU - Temim, Tea AU - Fox, Ori D. AU - Larison, Conor AU - Camacho-Neves, Yssavo AU - Brenner, Newman Max J. AU - Pierel, Justin D. R. AU - Foley, Ryan J. AU - Andrews, Jennifer E. AU - Badenes, Carles AU - Barna, Barnabás AU - Bostroem, K. Azalee AU - Deckers, Maxime AU - Flors, Andreas AU - Garnavich, Peter AU - Graham, Melissa L. AU - Graur, Or AU - Hosseinzadeh, Griffin AU - Howell, D. Andrew AU - Hughes, John P. AU - Johansson, Joel AU - Kendrew, Sarah AU - Kerzendorf, Wolfgang E. AU - Maeda, Keiichi AU - Maguire, Kate AU - McCully, Curtis AU - O'Brien, John T. AU - Rest, Armin AU - Sand, David J. AU - Shahbandeh, Melissa AU - Strolger, Louis-Gregory AU - Szalai, Tamás AU - Ashall, Chris AU - Baron, E. AU - Burns, Chris R. AU - DerKacy, James M. AU - Mera, Evans Tyco AU - Fisher, Alec AU - Galbany, Lluis AU - Hoeflich, Peter AU - Hsiao, Eric AU - de, Jaeger Thomas AU - Karamehmetoglu, Emir AU - Krisciunas, Kevin AU - Kumar, Sahana AU - Lu, Jing AU - Maund, Justyn AU - Mazzali, Paolo A. AU - Medler, Kyle AU - Morrell, Nidia AU - Phillips, Mark. M. AU - Shappee, Benjamin J. AU - Stritzinger, Maximilian AU - Suntzeff, Nicholas AU - Telesco, Charles AU - Tucker, Michael AU - Wang, Lifan TI - A JWST Near- and Mid-Infrared Nebular Spectrum of the Type Ia Supernova 2021aefx JF - ASTROPHYSICAL JOURNAL LETTERS J2 - ASTROPHYS J LETT VL - 944 PY - 2023 IS - 1 PG - 15 SN - 2041-8205 DO - 10.3847/2041-8213/acb4ec UR - https://m2.mtmt.hu/api/publication/33601645 ID - 33601645 AB - We present JWST near- and mid-infrared spectroscopic observations of the nearby normal Type Ia supernova SN 2021aefx in the nebular phase at $+255$ days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument (MIRI) observations, combined with ground-based optical data from the South African Large Telescope (SALT), constitute the first complete optical $+$ NIR $+$ MIR nebular SN Ia spectrum covering 0.3$-$14 $\\mu$m. This spectrum unveils the previously unobserved 2.5$-$5 $\\mu$m region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements and as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 $\\mu$m and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar III] 8.99 $\\mu$m line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models. LA - English DB - MTMT ER - TY - JOUR AU - Barna, Barnabás AU - Palouš, J. AU - Ehlerová, S. AU - Wünsch, R. AU - Morris, M. R. AU - Vermot, P. TI - FLASH-light on the RING: hydrodynamic simulations of expanding supernova shells near supermassive black holes JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 510 PY - 2022 SP - 5266 EP - 5279 PG - 14 SN - 0035-8711 DO - 10.1093/mnras/stab3723 UR - https://m2.mtmt.hu/api/publication/33641343 ID - 33641343 AB - The way supermassive black holes (SMBHs) in Galactic Centres (GCs) accumulate their mass is not completely determined. At large scales, it is governed by galactic encounters, mass inflows connected to spirals arms and bars, or due to expanding shells from supernova (SN) explosions in the central parts of galaxies. The investigation of the latter process requires an extensive set of gas dynamical simulations to explore the multidimensional parameter space needed to frame the phenomenon. The aims of this paper are to extend our investigation of the importance of SNe for inducing accretion on to an SMBH and carry out a comparison between the fully hydrodynamic code FLASH and the much less computationally intensive code RING, which uses the thin shell approximation. We simulate 3D expanding shells in a gravitational potential similar to that of the GC with a variety of homogeneous and turbulent environments. In homogeneous media, we find convincing agreement between FLASH and RING in the shapes of shells and their equivalent radii throughout their whole evolution until they become subsonic. In highly inhomogeneous, turbulent media, there is also a good agreement of shapes and sizes of shells, and of the times of their first contact with the central 1-pc sphere, where we assume that they join the accretion flow. The comparison supports the proposition that an SN occurring at a galactocentric distance of 5 pc typically drives 1-3 M⊙ into the central 1 pc around the GC. LA - English DB - MTMT ER - TY - JOUR AU - Ehlerová, S. AU - Palouš, J. AU - Morris, M. R. AU - Wünsch, R. AU - Barna, Barnabás AU - Vermot, P. TI - How to create Sgr A East. Where did the supernova explode? JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 668 PY - 2022 SN - 0004-6361 DO - 10.1051/0004-6361/202244682 UR - https://m2.mtmt.hu/api/publication/33641342 ID - 33641342 AB - Context. Sgr A East is the supernova remnant closest to the centre of the Milky Way. Its age has been estimated to be either very young, around 1-2 kyr, or about 10 kyr, and its exact origin remains unclear. Aims: We aspire to create a simple model of a supernova explosion that reproduces the shape, size, and location of Sgr A East. Methods: Using a simplified hydrodynamical code, we simulated the evolution of a supernova remnant in the medium around the Galactic centre. The latter consists of a nearby massive molecular cloud with which Sgr A East is known to be interacting and a wind from the nuclear star cluster. Results: Our preferred models of the Sgr A East remnant are compatible with an age of around 10 kyr. We also find suitable solutions for older ages, but not for ages younger than 5 kyr. Our simulations predict that the supernova exploded at a distance of about 3.5 pc from the Galactic centre, below the Galactic plane, slightly eastwards from the centre and 3 pc behind it. LA - English DB - MTMT ER -