TY - THES AU - Fülöp, Bálint TI - Van der Waals heterostructures: from fabrication to hydrostatic pressure experiments PB - Budapesti Műszaki és Gazdaságtudományi Egyetem PY - 2022 SP - 123 UR - https://m2.mtmt.hu/api/publication/33364384 ID - 33364384 LA - English DB - MTMT ER - TY - JOUR AU - Szentpéteri, Bálint AU - Rickhaus, Peter AU - de Vries, Folkert K AU - Márffy, Albin Máté AU - Fülöp, Bálint AU - Tóvári, Endre AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Kormányos, Andor AU - Csonka, Szabolcs AU - Makk, Péter TI - Tailoring the Band Structure of Twisted Double Bilayer Graphene with Pressure. JF - NANO LETTERS J2 - NANO LETT VL - 21 PY - 2021 IS - 20 SP - 8777 EP - 8784 PG - 8 SN - 1530-6984 DO - 10.1021/acs.nanolett.1c03066 UR - https://m2.mtmt.hu/api/publication/32462636 ID - 32462636 N1 - Department of Physics, Budapest University of Technology and Economics, Nanoelectronics Momentum Research Group, Hungarian Academy of Sciences, Budafoki ut 8, Budapest, 1111, Hungary Department of Physics, Budapest University of Technology and Economics, Correlated Van der Waals Structures Momentum Research Group, Hungarian Academy of Sciences, Budafoki ut 8, Budapest, 1111, Hungary Solid State Physics Laboratory, ETH Zürich, Zürich, CH-8093, Switzerland Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan Department of Physics of Complex Systems, Eötvös Loránd University, Pázmány P. s. 1/A, Budapest, 1117, Hungary Export Date: 7 March 2022 CODEN: NALEF Correspondence Address: Csonka, S.; Department of Physics, Budafoki ut 8, Hungary; email: Funding details: Innovációs és Technológiai Minisztérium Funding details: National Research, Development and Innovation Office, 2017-1.2.1-NKP-2017-00001 Funding text 1: The authors thank Prof. E. Tutuc, K. Ensslin, and T. Ihn for useful discussions, and Márton Hajdú, Ferenc Fülöp, and Gergö Fülöp for their technical support. We thank Gergö Fülöp for helping in creating the device sketch. This work acknowledges support from the Topograph FlagERA network, Grant OTKA FK-123894 and Grant OTKA PD-134758. This research was supported by the Ministry of Innovation and Technology and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project 2017-1.2.1-NKP-2017-00001), by SuperTop QuantERA network, and by the FET Open AndQC network and Nanocohybri COST network. P.M., E.T., and A.K. received funding from the Hungarian Academy of Sciences through the Bolyai Fellowship. A.K. acknowledges the support from the Hungarian Scientific Research Fund (OTKA) Grant K134437 and from the ELTE Institutional Excellence Program (Grant TKP2020-IKA-05). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant JPMXP0112101001) and JSPS KAKENHI (Grants 19H05790 and JP20H00354). We acknowledge support from the Graphene Flagship and from the European Union’s Horizon 2020 research and innovation program under Grant Agreement 862660/QUANTUM E LEAPS and the Swiss National Science Foundation via NCCR Quantum Science and Technology. Low T infrastructure was provided by VEKOP-2.3.3-15-2017-00015. AB - Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which gave a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing of the Fermi level and hence the electron density and also allows tuning of the interlayer potential, giving further control over band gaps. Here, we demonstrate that by application of hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically nontrivial band gap opens at the charge neutrality point at zero displacement field. LA - English DB - MTMT ER - TY - JOUR AU - Fülöp, Bálint AU - Márffy, Albin Máté AU - Zihlmann, Simon AU - Gmitra, Martin AU - Tóvári, Endre AU - Szentpéteri, Bálint AU - Kedves, Máté AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Fabian, Jaroslav AU - Schönenberger, Christian AU - Makk, Péter AU - Csonka, Szabolcs TI - Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure JF - NPJ 2D MATERIALS AND APPLICATIONS J2 - NPJ 2D MATER APPL VL - 5 PY - 2021 IS - 1 PG - 6 SN - 2397-7132 DO - 10.1038/s41699-021-00262-9 UR - https://m2.mtmt.hu/api/publication/32294722 ID - 32294722 N1 - Funding Agency and Grant Number: Topograph FlagERA network [OTKA NN-127903, OTKA FK-123894, PD-134758]; Swiss Nanoscience Institute; ERC project Top-Supra [787414]; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission; Swiss NCCR QSIT; Ministry of Innovation and Technology; National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary; Quantum Technology National Excellence Program [2017-1.2.1-NKP-2017-00001, VEKOP-2.3.3-15-2017-00015]; COST (European Cooperation in Science and Technology)European Cooperation in Science and Technology (COST); Bolyai FellowshipHungarian Academy of Sciences; Scientific Grant Agency of the Ministry of Education of the Slovak Republic [VEGA 1/0105/20]; Elemental Strategy Initiative conducted by the MEXT, Japan [JPMXP0112101001]; JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP20H00354]; CRESTCore Research for Evolutional Science and Technology (CREST) [(JPMJCR15F3] Funding text: This work was supported by the Topograph FlagERA network (OTKA NN-127903), the OTKA FK-123894 and PD-134758 grants, the Swiss Nanoscience Institute, the ERC project Top-Supra (787414), the Swiss National Science Foundation, the Swiss NCCR QSIT, the Ministry of Innovation and Technology, and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project Nr. 2017-1.2.1-NKP-2017-00001), by VEKOP-2.3.3-15-2017-00015, by SuperTop QuantERA network, and by the FET Open AndQC network. This article is based upon work from COST Action CA16218 Nanocohybri, supported by COST (European Cooperation in Science and Technology)-. P.M. and E.T. received funding from Bolyai Fellowship. M.G. acknowledges Scientific Grant Agency of the Ministry of Education of the Slovak Republic under the contract no. VEGA 1/0105/20. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI Grant Numbers JP20H00354 and the CREST(JPMJCR15F3), JST. The authors thank Andor Kormanyos, Andras Palyi, and Peter Boross for fruitful discussions and Marton Hajdu and Ferenc Fulop's team for their technical support. LA - English DB - MTMT ER - TY - JOUR AU - Fülöp, Bálint AU - Márffy, Albin Máté AU - Tóvári, Endre AU - Kedves, Máté AU - Zihlmann, Simon AU - Indolese, David AU - Kovács-Krausz, Zoltán AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Schönenberger, Christian AU - Kézsmárki, István AU - Makk, Péter AU - Csonka, Szabolcs TI - New method of transport measurements on van der Waals heterostructures under pressure JF - JOURNAL OF APPLIED PHYSICS J2 - J APPL PHYS VL - 130 PY - 2021 IS - 6 PG - 13 SN - 0021-8979 DO - 10.1063/5.0058583 UR - https://m2.mtmt.hu/api/publication/32130144 ID - 32130144 N1 - Department of Physics, Budapest University of Technology and Economics, Nanoelectronics "momentum" Research Group, Hungarian Academy of Sciences, Budafoki út 8, Budapest, 1111, Hungary Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan Experimental Physics v, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg, D-86159, Germany Export Date: 18 September 2021 CODEN: JAPIA Correspondence Address: Makk, P.; Department of Physics, Budafoki út 8, Hungary; email: makk.peter@ttk.bme.hu Funding details: 2017-1.2.1-NKP-2017-00001 Funding details: Swiss Nanoscience Institute, SNI Funding details: European Research Council, ERC, 787414 Funding details: European Cooperation in Science and Technology, COST, CA16218 Funding details: Japan Society for the Promotion of Science, KAKEN, JP20H00354 Funding details: Ministry of Education, Culture, Sports, Science and Technology, Monbusho, JPMXP0112101001 Funding details: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNF Funding details: Japan Science and Technology Agency, JST Funding details: Core Research for Evolutional Science and Technology, CREST, JPMJCR15F3 Funding details: Hungarian Scientific Research Fund, OTKA, FK-123894 Funding details: National Center of Competence in Research Quantum Science and Technology, NCCR QSIT Funding details: Innovációs és Technológiai Minisztérium Funding details: National Research, Development and Innovation Office Funding text 1: This work acknowledges support from the Topograph FlagERA network, the OTKA FK-123894 grants, the Swiss Nanoscience Institute (SNI), the ERC project Top-Supra (No. 787414), the Swiss National Science Foundation, and the Swiss NCCR QSIT. This research was supported by the Ministry of Innovation and Technology and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project No. 2017-1.2.1-NKP-2017-00001), by the SuperTop QuantERA network, and by the FET Open AndQC network. This article is based upon work from COST Action CA16218 Nanocohybri, supported by COST (European Cooperation in Science and Technology)—www.cost.eu. P.M. and E.T. received funding from Bolyai Fellowship. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant No. JPMXP0112101001), JSPS KAKENHI (Grant No. JP20H00354), and the CREST(No. JPMJCR15F3), JST. The authors thank Gergö Fülöp for his visual and Márton Hajdú and Ferenc Fülöp for their technical support. LA - English DB - MTMT ER - TY - JOUR AU - Kun, Péter AU - Fülöp, Bálint AU - Dobrik, Gergely AU - Nemes Incze, Péter AU - Lukács, István Endre AU - Csonka, Szabolcs AU - Hwang, Chanyong AU - Tapasztó, Levente TI - Robust quantum point contact operation of narrow graphene constrictions patterned by AFM cleavage lithography JF - NPJ 2D MATERIALS AND APPLICATIONS J2 - NPJ 2D MATER APPL VL - 4 PY - 2020 IS - 1 PG - 6 SN - 2397-7132 DO - 10.1038/s41699-020-00177-x UR - https://m2.mtmt.hu/api/publication/31779701 ID - 31779701 LA - English DB - MTMT ER - TY - JOUR AU - Kovács-Krausz, Zoltán AU - Hoque, Anamul Md AU - Makk, Péter AU - Szentpéteri, Bálint AU - Kocsis, Mátyás AU - Fülöp, Bálint AU - Yakushev, Michael Vasilievich AU - Kuznetsova, Tatyana Vladimirovna AU - Tereshchenko, Oleg Evgenevich AU - Kokh, Konstantin Aleksandrovich AU - Lukács, István Endre AU - Taniguchi, Takashi AU - Watanabe, Kenji AU - Dash, Saroj Prasad AU - Csonka, Szabolcs TI - Electrically Controlled Spin Injection from Giant Rashba Spin–Orbit Conductor BiTeBr JF - NANO LETTERS J2 - NANO LETT VL - 20 PY - 2020 IS - 7 SP - 4782 EP - 4791 PG - 10 SN - 1530-6984 DO - 10.1021/acs.nanolett.0c00458 UR - https://m2.mtmt.hu/api/publication/31357113 ID - 31357113 LA - English DB - MTMT ER - TY - JOUR AU - Scherübl, Zoltán AU - Pályi, András AU - Frank, György AU - Lukács, István Endre AU - Fülöp, Gergő AU - Fülöp, Bálint AU - Nygård, J. AU - Watanabe, K. AU - Taniguchi, T. AU - Zaránd, Gergely Attila AU - Csonka, Szabolcs TI - Observation of spin–orbit coupling induced Weyl points in a two-electron double quantum dot JF - COMMUNICATIONS PHYSICS J2 - COMM PHYS VL - 2 PY - 2019 PG - 6 SN - 2399-3650 DO - 10.1038/s42005-019-0200-2 UR - https://m2.mtmt.hu/api/publication/30910266 ID - 30910266 LA - English DB - MTMT ER - TY - JOUR AU - Fülöp, Bálint AU - Tajkov, Zoltán AU - Pető, János AU - Kun, Péter AU - Koltai, János AU - Oroszlány, László AU - Tóvári, Endre AU - Murakawa, H AU - Tokura, Y AU - Bordács, Sándor AU - Tapasztó, Levente AU - Csonka, Szabolcs TI - Exfoliation of single layer BiTeI flakes JF - 2D MATERIALS J2 - 2D MATER VL - 5 ET - 0 PY - 2018 IS - 3 PG - 9 SN - 2053-1583 DO - 10.1088/2053-1583/aac652 UR - https://m2.mtmt.hu/api/publication/3390771 ID - 3390771 N1 - Department of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, Budafoki út 8, Budapest, 1111, Hungary Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary Centre for Energy Research, Institute of Technical Physics and Materials Science, 2D Nanoelectronics Lendület Research Group, Budapest, Hungary Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary MTA-BME Lendület Nanoelectronics Research Group, Budafoki út 8, Budapest, 1111, Hungary Department of Physics, Osaka University, Toyonaka, 560-0043, Japan Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan AB - Spin orbit interaction is strongly enhanced in structures where a heavy element is embedded in an inversion asymmetric crystal field. A simple way for realizing such a setup is to take a single atomic layer of a heavy element and encapsulate it between two atomic layers of different elemental composition. BiTeI is a promising candidate for such a 2D crystal. In its bulk form BiTeI consists of loosely coupled three atom thick layers where a layer of high atomic number Bi are sandwiched between Te and I sheets. Despite considerable recent attention to bulk BiTeI due to its giant Rashba spin splitting, the isolation of a single layer remained elusive. In this work we report the first successful isolation and characterization of a single layer of BiTeI using a novel exfoliation technique on stripped gold. Our scanning probe studies and first principles calculations show that the fabricated 100 mu m sized BiTeI flakes are stable at ambient conditions. Giant Rashba splitting and spin-momentum locking of this new 2D crystal opens the way towards novel spintronic applications and synthetic topological heterostructures. LA - English DB - MTMT ER - TY - JOUR AU - Handschin, Clevin AU - Fülöp, Bálint AU - Makk, Péter AU - Blanter, Sofya AU - Weiss, Markus AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Csonka, Szabolcs AU - Schönenberger, Christian TI - Point contacts in encapsulated graphene JF - APPLIED PHYSICS LETTERS J2 - APPL PHYS LETT VL - 107 PY - 2015 IS - 18 PG - 10 SN - 0003-6951 DO - 10.1063/1.4935032 UR - https://m2.mtmt.hu/api/publication/2981979 ID - 2981979 N1 - Funding Agency and Grant Number: Swiss National Science FoundationSwiss National Science Foundation (SNSF); Swiss Nanoscience Institute; Swiss NCCR QSIT; ERC Advanced Investigator Grant QUEST; ERCEuropean Research Council (ERC) [258789]; OTKAOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [K112918]; EU flagship project graphene Funding text: This work was further funded by the Swiss National Science Foundation, the Swiss Nanoscience Institute, the Swiss NCCR QSIT, the ERC Advanced Investigator Grant QUEST, the ERC Grant No. 258789, OTKA Grant No. K112918, and the EU flagship project graphene. Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland Swiss Nanoscience Institute, Klingelbergstrasse 82, Basel, CH-4056, Switzerland Department of Physics, Budapest Univ. of Technol. and Econ. and Condensed Matter Res. Grp. of the Hung. Academy of Sciences, Budafoki ut 8, Budapest, 1111, Hungary LA - English DB - MTMT ER -