TY - GEN AU - Kovács-Krausz, Zoltán AU - Nagy, Dániel AU - Márffy, Albin Máté AU - Karpiak, Bogdan AU - Tajkov, Zoltán AU - Oroszlány, László AU - Koltai, János AU - Nemes Incze, Péter AU - Dash, Saroj P AU - Makk, Péter AU - Csonka, Szabolcs AU - Tóvári, Endre TI - Signature of pressure-induced topological phase transition in ZrTe5 PY - 2023 UR - https://m2.mtmt.hu/api/publication/34719870 ID - 34719870 AB - The layered van der Waals material ZrTe5 is known as a candidate topological insulator (TI), however its topological phase and the relation with other properties such as an apparent Dirac semimetallic state is still a subject of debate. We employ a semiclassical multicarrier transport (MCT) model to analyze the magnetotransport of ZrTe5 nanodevices at hydrostatic pressures up to 2 GPa. The temperature dependence of the MCT results between 10 and 300 K is assessed in the context of thermal activation, and we obtain the positions of conduction and valence band edges in the vicinity of the chemical potential. We find evidence of the closing and subsequent re-opening of the band gap with increasing pressure, which is consistent with a phase transition from weak to strong TI. This matches expectations from ab initio band structure calculations, as well as previous observations that CVT-grown ZrTe5 is in a weak TI phase in ambient conditions. LA - English DB - MTMT ER - TY - JOUR AU - Wang, Wendong AU - Clark, Nicholas AU - Hamer, Matthew AU - Carl, Amy AU - Tóvári, Endre AU - Sullivan-Allsop, Sam AU - Tillotson, Evan AU - Gao, Yunze AU - de Latour, Hugo AU - Selles, Francisco AU - Howarth, James AU - Castanon, Eli G. AU - Zhou, Mingwei AU - Bai, Haoyu AU - Li, Xiao AU - Weston, Astrid AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Mattevi, Cecilia AU - Bointon, Thomas H. AU - Wiper, Paul V. AU - Strudwick, Andrew J. AU - Ponomarenko, Leonid A. AU - Kretinin, Andrey V. AU - Haigh, Sarah J. AU - Summerfield, Alex AU - Gorbachev, Roman TI - Clean assembly of van der Waals heterostructures using silicon nitride membranes JF - NATURE ELECTRONICS J2 - NAT ELECTRON VL - 6 PY - 2023 SP - https://doi.org/10.1038/s41928-023-01075-y SN - 2520-1131 DO - 10.1038/s41928-023-01075-y UR - https://m2.mtmt.hu/api/publication/34428944 ID - 34428944 AB - Van der Waals heterostructures are fabricated by layer-by-layer assembly of individual two-dimensional materials and can be used to create a wide range of electronic devices. However, current assembly techniques typically use polymeric supports, which limit the cleanliness—and thus the electronic performance—of such devices. Here, we report a polymer-free technique for assembling van der Waals heterostructures using flexible silicon nitride membranes. Eliminating the polymeric supports allows the heterostructures to be fabricated in harsher environmental conditions (incompatible with a polymer) such as at temperatures of up to 600 °C, in organic solvents and in ultra-high vacuum. The resulting heterostructures have high-quality interfaces without interlayer contamination and exhibit strong electronic and optoelectronic behaviour. We use the technique to assemble twisted-graphene heterostructures in ultra-high vacuum, resulting in a tenfold improvement in moiré superlattice homogeneity compared to conventional transfer techniques. LA - English DB - MTMT ER - TY - JOUR AU - Kedves, Máté AU - Szentpéteri, Bálint AU - Márffy, Albin Máté AU - Tóvári, Endre AU - Papadopoulos, Nikos AU - Rout, Prasanna K. AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Goswami, Srijit AU - Csonka, Szabolcs AU - Makk, Péter TI - Stabilizing the Inverted Phase of a WSe 2 /BLG/WSe 2 Heterostructure via Hydrostatic Pressure JF - NANO LETTERS J2 - NANO LETT VL - 23 PY - 2023 IS - 20 SP - 9508 EP - 9514 PG - 7 SN - 1530-6984 DO - 10.1021/acs.nanolett.3c03029 UR - https://m2.mtmt.hu/api/publication/34207534 ID - 34207534 LA - English DB - MTMT ER - TY - JOUR AU - Guarochico-Moreira, Victor H. AU - Anderson, Christopher R. AU - Fal'ko, Vladimir AU - Grigorieva, Irina V. AU - Tóvári, Endre AU - Hamer, Matthew AU - Gorbachev, Roman AU - Liu, Song AU - Edgar, James H. AU - Principi, Alessandro AU - Kretinin, Andrey V. AU - Vera-Marun, Ivan J. TI - Thermopower in hBN/graphene/hBN superlattices JF - PHYSICAL REVIEW B J2 - PHYS REV B VL - 108 PY - 2023 IS - 11 PG - 8 SN - 2469-9950 DO - 10.1103/PhysRevB.108.115418 UR - https://m2.mtmt.hu/api/publication/34140921 ID - 34140921 N1 - Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL, United Kingdom Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica Del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, 090902, Ecuador Center of Nanotechnology Research and Development (CIDNA), Escuela Superior Politécnica Del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, Guayaquil, Ecuador National Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Budapest, H-1111, Hungary Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, United States Department of Materials, University of Manchester, Manchester, M13 9PL, United Kingdom Export Date: 13 October 2023 Correspondence Address: Kretinin, A.V.; Department of Physics and Astronomy, United Kingdom; email: andrey.kretinin@manchester.ac.uk Correspondence Address: Vera-Marun, I.J.; Department of Physics and Astronomy, United Kingdom; email: ivan.veramarun@manchester.ac.uk LA - English DB - MTMT ER - TY - JOUR AU - Kovács-Krausz, Zoltán AU - Tóvári, Endre AU - Nagy, Dániel AU - Márffy, Albin Máté AU - Karpiak, Bogdan AU - Tajkov, Zoltán AU - Oroszlány, László AU - Koltai, János AU - Nemes Incze, Péter AU - Dash, Saroj P. AU - Makk, Péter AU - Csonka, Szabolcs TI - Revealing the band structure of ZrTe5 using multicarrier transport JF - PHYSICAL REVIEW B J2 - PHYS REV B VL - 107 PY - 2023 IS - 7 PG - 10 SN - 2469-9950 DO - 10.1103/PhysRevB.107.075152 UR - https://m2.mtmt.hu/api/publication/33673970 ID - 33673970 LA - English DB - MTMT ER - TY - JOUR AU - Sütő, Máté AU - Prok, Tamás AU - Makk, Péter AU - Kirti, Magdhi AU - Biasiol, Giorgio AU - Csonka, Szabolcs AU - Tóvári, Endre TI - Near-surface InAs two-dimensional electron gas on a GaAs substrate: Characterization and superconducting proximity effect JF - PHYSICAL REVIEW B J2 - PHYS REV B VL - 106 PY - 2022 IS - 23 PG - 9 SN - 2469-9950 DO - 10.1103/PhysRevB.106.235404 UR - https://m2.mtmt.hu/api/publication/33293455 ID - 33293455 N1 - Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3, Budapest, H-1111, Hungary MTA-BME Superconducting Nanoelectronics Momentum Research Group, Muegyetem rkp. 3, Budapest, H-1111, Hungary MTA-BME Correlated Van der Waals Structures Momentum Research Group, Muegyetem rkp. 3, Budapest, H-1111, Hungary IOM CNR, Laboratorio TASC, Area Science Park Basovizza, Trieste, 34149, Italy Department of Physics, University of Trieste, Trieste, 34128, Italy Export Date: 5 April 2023 LA - English DB - MTMT ER - TY - JOUR AU - Szentpéteri, Bálint AU - Rickhaus, Peter AU - de Vries, Folkert K AU - Márffy, Albin Máté AU - Fülöp, Bálint AU - Tóvári, Endre AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Kormányos, Andor AU - Csonka, Szabolcs AU - Makk, Péter TI - Tailoring the Band Structure of Twisted Double Bilayer Graphene with Pressure. JF - NANO LETTERS J2 - NANO LETT VL - 21 PY - 2021 IS - 20 SP - 8777 EP - 8784 PG - 8 SN - 1530-6984 DO - 10.1021/acs.nanolett.1c03066 UR - https://m2.mtmt.hu/api/publication/32462636 ID - 32462636 N1 - Department of Physics, Budapest University of Technology and Economics, Nanoelectronics Momentum Research Group, Hungarian Academy of Sciences, Budafoki ut 8, Budapest, 1111, Hungary Department of Physics, Budapest University of Technology and Economics, Correlated Van der Waals Structures Momentum Research Group, Hungarian Academy of Sciences, Budafoki ut 8, Budapest, 1111, Hungary Solid State Physics Laboratory, ETH Zürich, Zürich, CH-8093, Switzerland Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan Department of Physics of Complex Systems, Eötvös Loránd University, Pázmány P. s. 1/A, Budapest, 1117, Hungary Export Date: 7 March 2022 CODEN: NALEF Correspondence Address: Csonka, S.; Department of Physics, Budafoki ut 8, Hungary; email: Funding details: Innovációs és Technológiai Minisztérium Funding details: National Research, Development and Innovation Office, 2017-1.2.1-NKP-2017-00001 Funding text 1: The authors thank Prof. E. Tutuc, K. Ensslin, and T. Ihn for useful discussions, and Márton Hajdú, Ferenc Fülöp, and Gergö Fülöp for their technical support. We thank Gergö Fülöp for helping in creating the device sketch. This work acknowledges support from the Topograph FlagERA network, Grant OTKA FK-123894 and Grant OTKA PD-134758. This research was supported by the Ministry of Innovation and Technology and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project 2017-1.2.1-NKP-2017-00001), by SuperTop QuantERA network, and by the FET Open AndQC network and Nanocohybri COST network. P.M., E.T., and A.K. received funding from the Hungarian Academy of Sciences through the Bolyai Fellowship. A.K. acknowledges the support from the Hungarian Scientific Research Fund (OTKA) Grant K134437 and from the ELTE Institutional Excellence Program (Grant TKP2020-IKA-05). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant JPMXP0112101001) and JSPS KAKENHI (Grants 19H05790 and JP20H00354). We acknowledge support from the Graphene Flagship and from the European Union’s Horizon 2020 research and innovation program under Grant Agreement 862660/QUANTUM E LEAPS and the Swiss National Science Foundation via NCCR Quantum Science and Technology. Low T infrastructure was provided by VEKOP-2.3.3-15-2017-00015. AB - Twisted two-dimensional structures open new possibilities in band structure engineering. At magic twist angles, flat bands emerge, which gave a new drive to the field of strongly correlated physics. In twisted double bilayer graphene dual gating allows changing of the Fermi level and hence the electron density and also allows tuning of the interlayer potential, giving further control over band gaps. Here, we demonstrate that by application of hydrostatic pressure, an additional control of the band structure becomes possible due to the change of tunnel couplings between the layers. We find that the flat bands and the gaps separating them can be drastically changed by pressures up to 2 GPa, in good agreement with our theoretical simulations. Furthermore, our measurements suggest that in finite magnetic field due to pressure a topologically nontrivial band gap opens at the charge neutrality point at zero displacement field. LA - English DB - MTMT ER - TY - JOUR AU - Fülöp, Bálint AU - Márffy, Albin Máté AU - Zihlmann, Simon AU - Gmitra, Martin AU - Tóvári, Endre AU - Szentpéteri, Bálint AU - Kedves, Máté AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Fabian, Jaroslav AU - Schönenberger, Christian AU - Makk, Péter AU - Csonka, Szabolcs TI - Boosting proximity spin–orbit coupling in graphene/WSe2 heterostructures via hydrostatic pressure JF - NPJ 2D MATERIALS AND APPLICATIONS J2 - NPJ 2D MATER APPL VL - 5 PY - 2021 IS - 1 PG - 6 SN - 2397-7132 DO - 10.1038/s41699-021-00262-9 UR - https://m2.mtmt.hu/api/publication/32294722 ID - 32294722 N1 - Funding Agency and Grant Number: Topograph FlagERA network [OTKA NN-127903, OTKA FK-123894, PD-134758]; Swiss Nanoscience Institute; ERC project Top-Supra [787414]; Swiss National Science FoundationSwiss National Science Foundation (SNSF)European Commission; Swiss NCCR QSIT; Ministry of Innovation and Technology; National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary; Quantum Technology National Excellence Program [2017-1.2.1-NKP-2017-00001, VEKOP-2.3.3-15-2017-00015]; COST (European Cooperation in Science and Technology)European Cooperation in Science and Technology (COST); Bolyai FellowshipHungarian Academy of Sciences; Scientific Grant Agency of the Ministry of Education of the Slovak Republic [VEGA 1/0105/20]; Elemental Strategy Initiative conducted by the MEXT, Japan [JPMXP0112101001]; JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP20H00354]; CRESTCore Research for Evolutional Science and Technology (CREST) [(JPMJCR15F3] Funding text: This work was supported by the Topograph FlagERA network (OTKA NN-127903), the OTKA FK-123894 and PD-134758 grants, the Swiss Nanoscience Institute, the ERC project Top-Supra (787414), the Swiss National Science Foundation, the Swiss NCCR QSIT, the Ministry of Innovation and Technology, and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project Nr. 2017-1.2.1-NKP-2017-00001), by VEKOP-2.3.3-15-2017-00015, by SuperTop QuantERA network, and by the FET Open AndQC network. This article is based upon work from COST Action CA16218 Nanocohybri, supported by COST (European Cooperation in Science and Technology)-. P.M. and E.T. received funding from Bolyai Fellowship. M.G. acknowledges Scientific Grant Agency of the Ministry of Education of the Slovak Republic under the contract no. VEGA 1/0105/20. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, Grant Number JPMXP0112101001, JSPS KAKENHI Grant Numbers JP20H00354 and the CREST(JPMJCR15F3), JST. The authors thank Andor Kormanyos, Andras Palyi, and Peter Boross for fruitful discussions and Marton Hajdu and Ferenc Fulop's team for their technical support. LA - English DB - MTMT ER - TY - JOUR AU - Kocsis, Mátyás AU - Zheliuk, Oleksandr AU - Makk, Péter AU - Tóvári, Endre AU - Kun, Péter AU - Tereshchenko, Oleg Evgenevich AU - Kokh, Konstantin Aleksandrovich AU - Taniguchi, Takashi AU - Watanabe, Kenji AU - Ye, Jianting AU - Csonka, Szabolcs TI - In situ tuning of symmetry-breaking-induced nonreciprocity in the giant-Rashba semiconductor BiTeBr JF - PHYSICAL REVIEW RESEARCH J2 - PRRESEARCH VL - 3 PY - 2021 IS - 3 PG - 11 SN - 2643-1564 DO - 10.1103/PhysRevResearch.3.033253 UR - https://m2.mtmt.hu/api/publication/32210273 ID - 32210273 LA - English DB - MTMT ER - TY - JOUR AU - Fülöp, Bálint AU - Márffy, Albin Máté AU - Tóvári, Endre AU - Kedves, Máté AU - Zihlmann, Simon AU - Indolese, David AU - Kovács-Krausz, Zoltán AU - Watanabe, Kenji AU - Taniguchi, Takashi AU - Schönenberger, Christian AU - Kézsmárki, István AU - Makk, Péter AU - Csonka, Szabolcs TI - New method of transport measurements on van der Waals heterostructures under pressure JF - JOURNAL OF APPLIED PHYSICS J2 - J APPL PHYS VL - 130 PY - 2021 IS - 6 PG - 13 SN - 0021-8979 DO - 10.1063/5.0058583 UR - https://m2.mtmt.hu/api/publication/32130144 ID - 32130144 N1 - Department of Physics, Budapest University of Technology and Economics, Nanoelectronics "momentum" Research Group, Hungarian Academy of Sciences, Budafoki út 8, Budapest, 1111, Hungary Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056, Switzerland Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan Experimental Physics v, Center for Electronic Correlations and Magnetism, University of Augsburg, Augsburg, D-86159, Germany Export Date: 18 September 2021 CODEN: JAPIA Correspondence Address: Makk, P.; Department of Physics, Budafoki út 8, Hungary; email: makk.peter@ttk.bme.hu Funding details: 2017-1.2.1-NKP-2017-00001 Funding details: Swiss Nanoscience Institute, SNI Funding details: European Research Council, ERC, 787414 Funding details: European Cooperation in Science and Technology, COST, CA16218 Funding details: Japan Society for the Promotion of Science, KAKEN, JP20H00354 Funding details: Ministry of Education, Culture, Sports, Science and Technology, Monbusho, JPMXP0112101001 Funding details: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, SNF Funding details: Japan Science and Technology Agency, JST Funding details: Core Research for Evolutional Science and Technology, CREST, JPMJCR15F3 Funding details: Hungarian Scientific Research Fund, OTKA, FK-123894 Funding details: National Center of Competence in Research Quantum Science and Technology, NCCR QSIT Funding details: Innovációs és Technológiai Minisztérium Funding details: National Research, Development and Innovation Office Funding text 1: This work acknowledges support from the Topograph FlagERA network, the OTKA FK-123894 grants, the Swiss Nanoscience Institute (SNI), the ERC project Top-Supra (No. 787414), the Swiss National Science Foundation, and the Swiss NCCR QSIT. This research was supported by the Ministry of Innovation and Technology and the National Research, Development and Innovation Office within the Quantum Information National Laboratory of Hungary and by the Quantum Technology National Excellence Program (Project No. 2017-1.2.1-NKP-2017-00001), by the SuperTop QuantERA network, and by the FET Open AndQC network. This article is based upon work from COST Action CA16218 Nanocohybri, supported by COST (European Cooperation in Science and Technology)—www.cost.eu. P.M. and E.T. received funding from Bolyai Fellowship. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (Grant No. JPMXP0112101001), JSPS KAKENHI (Grant No. JP20H00354), and the CREST(No. JPMJCR15F3), JST. The authors thank Gergö Fülöp for his visual and Márton Hajdú and Ferenc Fülöp for their technical support. LA - English DB - MTMT ER -