TY - JOUR AU - Mihályi, Csaba AU - Iordanov, Iordan AU - Törőcsik, Beáta AU - Csanády, László TI - Simple binding of protein kinase A, prior to phosphorylation, allows CFTR anion channels to be opened by nucleotides JF - PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA J2 - P NATL ACAD SCI USA VL - 117 PY - 2020 IS - 35 SP - 21740 EP - 21746 PG - 7 SN - 0027-8424 DO - 10.1073/pnas.2007910117 UR - https://m2.mtmt.hu/api/publication/31397038 ID - 31397038 LA - English DB - MTMT ER - TY - THES AU - Mihályi, Csaba TI - A nukleotidkötő domének kölcsönhatásainak szerepe a CFTR ioncsatorna kapuzásában PY - 2017 DO - 10.14753/SE.2017.2043 UR - https://m2.mtmt.hu/api/publication/3313888 ID - 3313888 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Iordanov, Iordan AU - Mihályi, Csaba AU - Tóth, Balázs AU - Csanády, László TI - The proposed channel-enzyme transient receptor potential melastatin 2 does not possess ADP ribose hydrolase activity JF - ELIFE J2 - ELIFE VL - 5 PY - 2016 PG - 20 SN - 2050-084X DO - 10.7554/eLife.17600 UR - https://m2.mtmt.hu/api/publication/3105008 ID - 3105008 N1 - Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary Cited By :17 Export Date: 20 September 2019 Correspondence Address: Csanády, L.; Department of Medical Biochemistry, Semmelweis UniversityHungary; email: csanady.laszlo@med.semmelweis-univ.hu Funding Agency and Grant Number: Howard Hughes Medical Institute International Early Career Scientist [55007416]; Magyar Tudomanyos Akademia Lendulet [LP2012-39/2012] Funding text: Howard Hughes Medical Institute International Early Career Scientist grant, 55007416 Laszlo Csanady; Magyar Tudomanyos Akademia Lendulet grant, LP2012-39/2012 Laszlo Csanady Export Date: 7 January 2020 Correspondence Address: Csanády, L.; Department of Medical Biochemistry, Semmelweis UniversityHungary; email: csanady.laszlo@med.semmelweis-univ.hu LA - English DB - MTMT ER - TY - JOUR AU - Mihályi, Csaba AU - Törőcsik, Beáta AU - Csanády, László TI - Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization JF - ELIFE J2 - ELIFE VL - 5 PY - 2016 PG - 12 SN - 2050-084X DO - 10.7554/eLife.18164 UR - https://m2.mtmt.hu/api/publication/3083629 ID - 3083629 AB - In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. LA - English DB - MTMT ER - TY - JOUR AU - Csanády, László AU - Mihályi, Csaba AU - Szöllősi, András AU - Törőcsik, Beáta AU - Vergani, P TI - Conformational changes in the catalytically inactive nucleotide-binding site of CFTR JF - JOURNAL OF GENERAL PHYSIOLOGY J2 - J GEN PHYSIOL VL - 142 PY - 2013 IS - 1 SP - 61 EP - 73 PG - 13 SN - 0022-1295 DO - 10.1085/jgp.201210954 UR - https://m2.mtmt.hu/api/publication/2333381 ID - 2333381 AB - A central step in the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the association of its two cytosolic nucleotide-binding domains (NBDs) into a head-to-tail dimer, with two nucleotides bound at the interface. Channel opening and closing, respectively, are coupled to formation and disruption of this tight NBD dimer. CFTR is an asymmetric adenosine triphosphate (ATP)-binding cassette protein in which the two interfacial-binding sites (composite sites 1 and 2) are functionally different. During gating, the canonical, catalytically active nucleotide-binding site (site 2) cycles between dimerized prehydrolytic (state O1), dimerized post-hydrolytic (state O2), and dissociated (state C) forms in a preferential C-->O1-->O2-->C sequence. In contrast, the catalytically inactive nucleotide-binding site (site 1) is believed to remain associated, ATP-bound, for several gating cycles. Here, we have examined the possibility of conformational changes in site 1 during gating, by studying gating effects of perturbations in site 1.Previous work showed that channel closure is slowed, both under hydrolytic and nonhydrolytic conditions, by occupancy of site 1 by N6-(2-phenylethyl)-ATP (P-ATP) as well as by the site-1 mutation H1348A (NBD2 signature sequence). Here, we found that P-ATP prolongs wild-type (WT) CFTR burst durations by selectively slowing (>2x) transition O1-->O2 and decreases the nonhydrolytic closing rate (transition O1-->C) of CFTR mutants K1250A ( approximately 4x) and E1371S ( approximately 3x). Mutation H1348A also slowed ( approximately 3x) the O1-->O2 transition in the WT background and decreased the nonhydrolytic closing rate of both K1250A ( approximately 3x) and E1371S ( approximately 3x) background mutants. Neither P-ATP nor the H1348A mutation affected the 1:1 stoichiometry between ATP occlusion and channel burst events characteristic to WT CFTR gating in ATP. The marked effect that different structural perturbations at site 1 have on both steps O1-->C and O1-->O2 suggests that the overall conformational changes that CFTR undergoes upon opening and coincident with hydrolysis at the active site 2 include significant structural rearrangement at site 1. LA - English DB - MTMT ER -