TY - JOUR AU - Moór, Attila AU - Ábrahám, Péter AU - Su, K Y L AU - Henning, T AU - Marino, S AU - Chen, Lei AU - Kóspál, Ágnes AU - Pawellek, Nicole AU - Varga, József AU - Vida, Krisztián TI - Abundant sub-micron grains revealed in newly discovered extreme debris discs JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 528 PY - 2024 IS - 3 SP - 4528 EP - 4546 PG - 19 SN - 0035-8711 DO - 10.1093/mnras/stae155 UR - https://m2.mtmt.hu/api/publication/34566634 ID - 34566634 N1 - Konkoly Observatory, HUN-REN Research Centre for Astronomy and Earth Sciences, Konkoly-Thege Miklós út 15-17, Budapest, H-1121, Hungary CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17., Budapest, H-1121, Hungary ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, Vienna, 1180, Austria Department of Astronomy, Steward Observatory, The University of Arizona, Tucson, AZ 85721-0009, United States Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, D-69117, Germany Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom Export Date: 18 April 2024 CODEN: MNRAA Correspondence Address: Moór, A.; Konkoly Observatory, Konkoly-Thege Miklós út 15-17, Hungary; email: moor@konkoly.hu AB - Extreme debris discs (EDDs) are bright and warm circumstellar dusty structures around main sequence stars. They may represent the outcome of giant collisions occuring in the terrestrial region between large planetesimals or planetary bodies, and thus provide a rare opportunity to peer into the aftermaths of these events. Here, we report on results of a mini-survey we conducted with the aim to increase the number of known EDDs, investigate the presence of solid-state features around 10 μm in eight EDDs, and classify them into the silica or silicate dominated groups. We identify four new EDDs and derive their fundamental properties. For these, and for four other previously known discs, we study the spectral energy distribution around 10 μm by means of VLT/VISIR photometryin three narrow-band filters and conclude that all eight objects likely exhibit solid-state emission features from sub-micron grains. We find that four discs probably belong to the silicate dominated subgroup. Considering the age distribution of the entire EDD sample, we find that their incidence begins to decrease only after 300 Myr, suggesting that the earlier common picture that these objects are related to the formation of rocky planets may not be exclusive, and that other processes may be involved for older objects (≳100 Myr). Because most of the older EDD systems have wide, eccentric companions, we suggest that binarity may play a role in triggering late giant collisions. LA - English DB - MTMT ER - TY - JOUR AU - Varga, József AU - Waters, L. B. F. M. AU - Hogerheijde, M. AU - van Boekel, R. AU - Matter, A. AU - Lopez, B. AU - Perraut, K. AU - Chen, Lei AU - Nadella, D. AU - Wolf, S. AU - Dominik, C. AU - Kóspál, Ágnes AU - Ábrahám, Péter AU - Augereau, J.-C. AU - Boley, P. AU - Bourdarot, G. AU - Caratti o Garatti, A. AU - Fernando, Cruz-Saenz de Miera AU - Danchi, W. C. AU - Gámez Rosas, V. AU - Henning, Th. AU - Hofmann, K.-H. AU - Houllé, M. AU - Isbell, J. W. AU - Jaffe, W. AU - Juhász, T. AU - Kecskeméthy, V. AU - Kobus, J. AU - Kokoulina, E. AU - Labadie, L. AU - Lykou, Foteini AU - Millour, F. AU - Moór, Attila AU - Morujão, N. AU - Pantin, E. AU - Schertl, D. AU - Scheuck, M. AU - van Haastere, L. AU - Weigelt, G. AU - Woillez, J. AU - Woitke, P. TI - Mid-infrared evidence for iron-rich dust in the multi-ringed inner disk of HD 144432 JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 681 PY - 2024 SN - 0004-6361 DO - 10.1051/0004-6361/202347535 UR - https://m2.mtmt.hu/api/publication/34498310 ID - 34498310 N1 - HUN-REN Research Centre for Astronomy and Earth Sciences, Konkoly Observatory, Konkoly-Thege Miklós Út 15-17, Budapest, 1121, Hungary CSFK, MTA Centre of Excellence, Konkoly-Thege Miklós Út 15-17, Budapest, 1121, Hungary Leiden Observatory, Leiden University, PO Box 9513, RA, Leiden, 2300, Netherlands Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, PO Box 9010, MC 62, GL, Nijmegen, 6500, Netherlands SRON Netherlands Institute for Space Research, Niels Bohrweg 4, CA, Leiden, 2333, Netherlands Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, GE, Amsterdam, 1090, Netherlands Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, 69117, Germany Université Côte D Azur, Observatoire de la Côte D Azur, CNRS, Laboratoire Lagrange, France Univ. Grenoble Alpes, CNRS, IPAG, Grenoble, 38000, France Institute of Theoretical Physics and Astrophysics, University of Kiel, Leibnizstr. 15, Kiel, 24118, Germany ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter Sétány 1/A, Budapest, 1117, Hungary Visiting Astronomer, Laboratoire Lagrange, Université Côte D Azur, Observatoire de la Côte D Azur, CNRS, Boulevard de L Observatoire, CS 34229, Nice, Cedex 4 06304, France Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, Garching bei München, 85741, Germany INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, Napoli, 80131, Italy Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, UT3-PS, OMP, CNRS, 9 Av. du Colonel Roche, Toulouse, Cedex 4 31028, France NASA Goddard Space Flight Center, Astrophysics Division, Greenbelt, MD 20771, United States Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, 53121, Germany STAR Institute, University of Liège, Liège, Belgium I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, Köln, 50937, Germany CENTRA, Centro de Astrofísica e Gravitação, IST, Universidade de Lisboa, Lisboa, 1049-001, Portugal Faculdade de Engenharia, Universidade Do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal AIM, CEA, CNRS, Université Paris-Saclay, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, 91191, France European Southern Observatory, Karl-Schwarzschild-StraB 2, Garching, 85748, Germany Space Research Institute, Austrian Academy of Sciences, Schmiedlstr. 6, Graz, 8042, Austria Export Date: 2 February 2024 CODEN: AAEJA AB - Context. Rocky planets form by the concentration of solid particles in the inner few au regions of planet-forming disks. Their chemical composition reflects the materials in the disk available in the solid phase at the time the planets were forming. Studying the dust before it gets incorporated in planets provides a valuable diagnostic for the material composition. LA - English DB - MTMT ER - TY - JOUR AU - Pawellek, Nicole AU - Moór, Attila AU - Kirchschlager, F. AU - Milli, J. AU - Kóspál, Ágnes AU - Ábrahám, Péter AU - Marino, S. AU - Wyatt, M. AU - Rebollido, I. AU - Hughes, A.M. AU - Cantalloube, F. AU - Henning, T. TI - The debris disc of HD 131488: bringing together thermal emission and scattered light JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 527 PY - 2024 IS - 2 SP - 3559 EP - 3584 PG - 26 SN - 0035-8711 DO - 10.1093/mnras/stad3455 UR - https://m2.mtmt.hu/api/publication/34435056 ID - 34435056 N1 - Institut für Astrophysik, Universität Wien, Türkenschanzstraße 17, Vienna, 1180, Austria Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Konkoly-Thege Miklós út 15-17, Budapest, 1121, Hungary Csfk, Mta Centre of Excellence, Konkoly-Thege Miklós út 15-17, Budapest, 1121, Hungary Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom Sterrenkundig Observatorium, Ghent University, Krijgslaan 281-S9, Gent, B9000, Belgium Univ. Grenoble Alpes, Cnrs, Ipag, Grenoble, F-38000, France Elte Eötvös Loránd University, Institute of Physics, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, D-69117, Germany Department for Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, United Kingdom Centro de Astrobiología (CAB, CSIC-INTA), Camino Bajo del Castillo s/n, Villanueva de la Cañada, Madrid, E-28692, Spain Astronomy Department and Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, 06459, CT, United States Aix Marseille Univ, Cnrs, Cnes, Lam, Pôle de l'Étoile Site de Château-Gombert, 28, rue Frédéric Joliot-Curie, Marseille, 13388 cedex 13, France Export Date: 14 December 2023; Cited By: 0; Correspondence Address: N. Pawellek; Institut für Astrophysik, Universität Wien, Vienna, Türkenschanzstraße 17, 1180, Austria; email: nicole.pawellek@univie.ac.at; CODEN: MNRAA LA - English DB - MTMT ER - TY - JOUR AU - Siwak, Michal AU - Hillenbrand, Lynne A. AU - Kóspál, Ágnes AU - Ábrahám, Péter AU - Giannini, Teresa AU - De, Kishalay AU - Moór, Attila AU - Szilágyi, Máté AU - Janík, Jan AU - Koen, Chris AU - Park, Sunkyung AU - Nagy, Zsófia AU - Fernando, Cruz-Saenz de Miera AU - Fiorellino, Elenonora AU - Marton, Gábor AU - Kun, Mária AU - Lucas, Philip W. AU - Udalski, Andrzej AU - Szabó, Zsófia Marianna TI - Gaia21bty: An EXor lightcurve exhibiting an FUor spectrum JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 524 PY - 2023 IS - 4 SP - 5548 EP - 5565 PG - 18 SN - 0035-8711 DO - 10.1093/mnras/stad2135 UR - https://m2.mtmt.hu/api/publication/34079891 ID - 34079891 N1 - Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15–17, Budapest, H-1121, Hungary CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15–17, Budapest, H-1121, Hungary Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, United States Institute of Physics, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Max Planck Institute for Astronomy, Kónigstuhl 17, Heidelberg, D-69117, Germany INAF-Osservatorio Astronomico di Roma, via di Frascati 33, Monte Porzio Catone, I-00040, Italy Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlářská 2, Brno, CZ-611 37, Czech Republic Department of Statistics, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape, South Africa INAF-Osservatorio Astronomico di Capodimonte, via Moiariello 16, Napoli, I-80131, Italy Centre for Astrophysics, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, United Kingdom Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, Warszawa, PL-00-478, Poland Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, D-53121, Germany Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, United Kingdom Export Date: 30 October 2023 CODEN: MNRAA Correspondence Address: Siwak, M.; Konkoly Observatory, Konkoly-Thege Miklós út 15–17, Hungary; email: michal.siwak@gmail.com AB - Gaia21bty, a pre-main sequence star that previously had shown aperiodic dips in its light curve, underwent a considerable ΔG ≈ 2.9 mag brightening that occurred over a few months between 2020 October - 2021 February. The Gaia lightcurve shows that the star remained near maximum brightness for about 4 - 6 months, and then started slowly fading over the next 2 years, with at least three superimposed ~1 mag sudden rebrightening events. Whereas the amplitude and duration of the maximum is typical for EXors, optical and near-infrared spectra obtained at the maximum are dominated by features which are typical for FUors. Modelling of the accretion disc at the maximum indicates that the disc bolometric luminosity is 43 L⊙ and the mass accretion rate is 2.5 × 10-5 M⊙ yr-1, which are typical values for FUors even considering the large uncertainty in the distance ($1.7_{-0.4}^{+0.8}$ kpc). Further monitoring is necessary to understand the cause of the quick brightness decline, the rebrightening, and the other post-outburst light changes, as our multi-colour photometric data suggest that they could be caused by a long and discontinuous obscuration event. We speculate that the outburst might have induced large-scale inhomogeneous dust condensations in the line of sight leading to such phenomena, whilst the FUor outburst continues behind the opaque screen. LA - English DB - MTMT ER - TY - JOUR AU - Cataldi, Gianni AU - Aikawa, Yuri AU - Iwasaki, Kazunari AU - Marino, Sebastian AU - Brandeker, Alexis AU - Hales, Antonio AU - Henning, Thomas AU - Higuchi, Aya E. AU - Hughes, A. Meredith AU - Janson, Markus AU - Kral, Quentin AU - Matrà, Luca AU - Moór, Attila AU - Olofsson, Göran AU - Redfield, Seth AU - Roberge, Aki TI - Primordial or Secondary? Testing Models of Debris Disk Gas with ALMA* JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 951 PY - 2023 IS - 2 PG - 32 SN - 1538-4357 DO - 10.3847/1538-4357/acd6f3 UR - https://m2.mtmt.hu/api/publication/34070188 ID - 34070188 N1 - Funding Agency and Grant Number: East Asian ALMA Regional Center; NAOJ ALMA Scientific Research grant [2019.1.01175.S]; Royal Society [2019-13B]; Research Corporation for Science Advancement [20H05844, 20H05847] Funding text: We thank the anonymous referee for a careful review that helped to significantly clarify this manuscript. We would like to acknowledge useful discussions with German Molpeceres. We also acknowledge data calibration support by the East Asian ALMA Regional Center. We thank Inga Kamp, Nagayoshi Ohashi, Alycia Weinberger, and Yanqin Wu for contributions to the proposal of project 2019.1.01175.S that significantly expanded the number of disks with C i data. G.C. was supported by the NAOJ ALMA Scientific Research grant code 2019-13B. Y.A. acknowledges support by Grant-in-Aid for Transformative Research Areas (A) grant Nos. 20H05844 and 20H05847. S.M. is supported by the Royal Society as a Royal Society University Research Fellow. A.M.H. is supported by a Cottrell Scholar Award from the Research Corporation for Science Advancement. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00780.S, ADS/JAO.ALMA#2012.1.00437.S, ADS/JAO.ALMA#2012.1.00688.S, ADS/JAO.ALMA#2013.1.00612.S, ADS/JAO.ALMA#2013.1.00773.S, ADS/JAO.ALMA#2013.1.01147.S, ADS/JAO.ALMA#2013.1.01166.S, ADS/JAO.ALMA#2015.1.00032.S, ADS/JAO.ALMA#2016.A.00010.S, ADS/JAO.ALMA#2016.A.00021.T, ADS/JAO.ALMA#2016.2.00200.S, ADS/JAO.ALMA#2016.1.01253.S, ADS/JAO.ALMA#2017.A.00024.S, ADS/JAO.ALMA#2017.1.01575.S, ADS/JAO.ALMA#2018.1.00500.S, ADS/JAO.ALMA#2018.1.00633.S, ADS/JAO.ALMA#2018.1.01222.S, ADS/JAO.ALMA#2019.2.00208.S, ADS/JAO.ALMA#2019.1.01603.S, ADS/JAO.ALMA#2019.1.01175.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. This research has made use of NASA's Astrophysics Data System. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. AB - The origin and evolution of gas in debris disks are still not well understood. Secondary gas production from cometary material or a primordial origin have been proposed. So far, observations have mostly concentrated on CO, with only a few C observations available. We overview the C and CO content of debris disk gas and test state-of-the-art models. We use new and archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of CO and C i emission, complemented by C ii data from Herschel, for a sample of 14 debris disks. This expands the number of disks with ALMA measurements of both CO and C i by 10 disks. We present new detections of C i emission toward three disks: HD 21997, HD 121191, and HD 121617. We use a simple disk model to derive gas masses and column densities. We find that current state-of-the-art models of secondary gas production overpredict the C 0 content of debris disk gas. This does not rule out a secondary origin, but might indicate that the models require an additional C removal process. Alternatively, the gas might be produced in transient events rather than a steady-state collisional cascade. We also test a primordial gas origin by comparing our results to a simplified thermochemical model. This yields promising results, but more detailed work is required before a conclusion can be reached. Our work demonstrates that the combination of C and CO data is a powerful tool to advance our understanding of debris disk gas. LA - English DB - MTMT ER - TY - JOUR AU - Gabányi, Krisztina Éva AU - Smith, K. AU - Frey, Sándor AU - Paragi, Zsolt AU - An, T. AU - Moór, Attila TI - The Detection of a Compact Radio Feature in a Seyfert Galaxy After an Accretion Rate Change JF - POS - PROCEEDINGS OF SCIENCE J2 - POS - PROCEEDINGS OF SCIENCE VL - 428 PY - 2023 PG - 5 SN - 1824-8039 DO - 10.22323/1.428.0006 UR - https://m2.mtmt.hu/api/publication/33758671 ID - 33758671 LA - English DB - MTMT ER - TY - GEN AU - Szabo, Z. M. AU - Kóspál, Ágnes AU - Ábrahám, Péter AU - Park, Sunkyung AU - Siwak, Michal AU - Green, J. D. AU - Moór, Attila AU - Pál, András AU - Acosta-Pulido, J. A. AU - Lee, J. -E. AU - Cseh, B. AU - Csornyei, G. AU - Hanyecz, O. AU - Könyves-Tóth, Réka AU - Krezinger, M. AU - Kriskovics, Levente AU - Ordasi, A. AU - Sárneczky, Krisztián AU - Seli, B. AU - Szakáts, Róbert AU - Szing, A. AU - Vida, Krisztián TI - VizieR Online Data Catalog: Opt-to-IR monitoring obs. of V1057 Cyg (Szabo+, 2021) PY - 2023 UR - https://m2.mtmt.hu/api/publication/33729197 ID - 33729197 AB - We performed the majority of our photometric observations in B, V, RC, IC , g', r', and i' filters at the Piszkesteto Mountain Station of Konkoly Observatory (Hungary) between 2005 and 2021. Three telescopes with three slightly different optical systems were used: the 1m Ritchey-Chretien-coude (RCC) telescope, the 60/90/180cm Schmidt telescope and the Astro Systeme Austria AZ800 alt-azimuth direct drive 80cm Ritchey-Chretien (RC80) telescope; see Section 2.1. In addition to our national facilities, we occasionally used other telescopes. On 2006 July 20 and 2012 October 13 we obtained B, V, RJ, and IJ images of V1057 Cyg with the IAC80 telescope of the Instituto de Astrofisica de Canarias located at Teide Observatory (Canary Islands, Spain). During 2019 August-September, in parallel with TESS, we additionally observed V1057 Cyg at the Northern Skies Observatory (NSO). We used the 0.4m telescope equipped with BVI filters. We also observed V1057 Cyg with the 2.56m Nordic Optical Telescope (NOT) at the Roque de los Muchachos Observatory, La Palma, in the Canary Islands (Plan ID 61-414, PI: Zs. M. Szabo). For optical imaging we used the Alhambra Faint Object Spectrograph and Camera (ALFOSC) on 2020 August 17. The Bessel BVR filter set was supplemented by an i interference filter, which is similar to the SLOAN i', but with a slightly longer effective wavelength of λeff=0.789um. We obtained NIR images in the J, H, and Ks bands at six epochs between 2006 July 15 and 2012 October 13 using the 1.52m Telescopio Carlos Sanchez (TCS) at the Teide Observatory. We also used the NOTCam instrument on the NOT on 2020 August 29. See Section 2.3. We obtained a new optical spectrum of V1057 Cyg with the high-resolution FIbre-fed Echelle Spectrograph (FIES) instrument on the NOT on 2020 August 17. We used a fiber with a larger entrance aperture of 2.5", which provided a spectral resolution R=25000, covering the 370-900nm wavelength range. V1057 Cyg was also observed with the Bohyunsan Optical Echelle Spectrograph (BOES) installed on the 1.8m telescope at the Bohyunsan Optical Astronomy Observatory (BOAO). It provides R=30000 in the wavelength range ~400-900nm. The first spectrum was obtained on 2012-September-11 and the last on 2018-December-18. See Section 2.4. On 2020 August 29, we used the NOTCam on the NOT to obtain new NIR spectra of V1057 Cyg and Iot Cyg (A5 V) as our telluric standard star in the JHKs bands. We used the low-resolution camera mode (R=2500). See Section 2.5. On 2018 September 6, we observed V1057 Cyg with the Stratospheric Observatory for Infrared Astronomy (SOFIA) using the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST). We obtained mid-infrared imaging in a series of short exposures in band F111 (10.6-11.6um) totaling ~30s, a single exposure in F056 (5.6um) for 37s and F077 (7.5-8um) for 42s, and R~100-200 spectra with G063 (5-8um) and G227 (17-27um) (Plan ID 06_062, PI: J. D. Green). See Section 2.6. (2 data files). LA - English DB - MTMT ER - TY - JOUR AU - Moór, Attila AU - Ábrahám, Péter AU - Szabó M., Gyula AU - Vida, Krisztián AU - Cataldi, Gianni AU - Derekas, Alíz AU - Henning, Thomas AU - Kinemuchi, Karen AU - Kóspál, Ágnes AU - Kovács, József AU - Pál, András AU - Sarkis, Paula AU - Seli, Bálint Attila AU - Szabó, Zsófia M. AU - Takáts, Katalin TI - Erratum: “A New Sample of Warm Extreme Debris Disks from the ALLWISE Catalog” (2021, ApJ, 910, 27) JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 940 PY - 2022 IS - 2 SN - 1538-4357 DO - 10.3847/1538-4357/aca280 UR - https://m2.mtmt.hu/api/publication/33535919 ID - 33535919 LA - English DB - MTMT ER - TY - JOUR AU - Moór, Attila AU - Ábrahám, Péter AU - Kóspál, Ágnes AU - Su, Kate Y. L. AU - Rieke, George H. AU - Vida, Krisztián AU - Cataldi, Gianni AU - Bódi, Attila AU - Sódorné Bognár, Zsófia AU - Cseh, Borbála AU - Csörnyei, Géza AU - Egei, Nóra AU - Farkas, Anikó AU - Hanyecz, Ottó AU - Ignácz, Bernadett AU - Kalup, Csilla AU - Könyves-Tóth, Réka AU - Kriskovics, Levente AU - Mészáros, László AU - Pál, András AU - Ordasi, András AU - Sárneczky, Krisztián AU - Seli, Bálint Attila AU - Sódor, Ádám AU - Szakáts, Róbert AU - Vinkó, József AU - Zsidi, Gabriella TI - Mid-infrared time-domain study of recent dust production events in the extreme debris disc of TYC 4209-1322-1 JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 516 PY - 2022 IS - 4 SP - 5684 EP - 5701 PG - 18 SN - 0035-8711 DO - 10.1093/mnras/stac2595 UR - https://m2.mtmt.hu/api/publication/33108812 ID - 33108812 N1 - Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eötvös Loránd Research Network (ELKH), Konkoly-Thege Miklós út 15-17, Budapest, H-1121, Hungary CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest, H-1121, Hungary ELTE Eötvös Loránd University, Institute of Physics, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Max-Planck-Institut für Astronomie, Königstuhl 17, Heidelberg, D-69117, Germany Department of Astronomy, Steward Observatory, The University of Arizona, Tucson, AZ 85721-0009, United States Department of Planetary Sciences, Lunar & Planetary Laboratory, The University of Arizona, 1629 E University Blvd, Tucson, AZ 85721-0092, United States National Astronomical Observatory of Japan, Osawa 2-21-1, , Tokyo, Mitaka, 181-8588, Japan Department of Astronomy, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan MTA, CSFK, Lendület Near-Field Cosmology Research Group, Hungary MTA-ELTE, Lendület 'Momentum' Milky Way Research Group, Hungary Faculty of Informatics, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Department of Optics and Quantum Electronics, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary Export Date: 16 June 2023 CODEN: MNRAA Correspondence Address: Moór, A.; Konkoly Observatory, Konkoly-Thege Miklós út 15-17, Hungary; email: moor@konkoly.hu AB - Extreme debris discs are characterized by unusually strong mid-infrared excess emission, which often proves to be variable. The warm dust in these discs is of transient nature and is likely related to a recent giant collision occurring close to the star in the terrestrial region. Here we present the results of a 877 days long, gap-free photometric monitoring performed by the Spitzer Space Telescope of the recently discovered extreme debris disc around TYC 4209-1322-1. By combining these observations with other time-domain optical and mid-infrared data, we explore the disc variability of the last four decades, with particular emphasis on the last 12 years. During the latter interval the disc showed substantial changes, the most significant was the brightening and subsequent fading between 2014 and 2018 as outlined in WISE data. The Spitzer light curves outline the fading phase and a subsequent new brightening of the disc after 2018, revealing an additional flux modulation with a period of ~39 days on top of the long-term trend. We found that all these variations can be interpreted as the outcome of a giant collision that happened at an orbital radius of ~0.3 au sometime in 2014. Our analysis implies that a collision on a similar scale could have taken place around 2010, too. The fact that the disc was already peculiarly dust rich 40 years ago, as implied by IRAS data, suggests that these dust production events belong to a chain of large impacts triggered by an earlier even more catastrophic collision. LA - English DB - MTMT ER - TY - JOUR AU - Vizgan, David AU - Meredith, Hughes A. AU - Carter, Evan S. AU - Flaherty, Kevin M. AU - Pan, Margaret AU - Chiang, Eugene AU - Schlichting, Hilke AU - Wilner, David J. AU - Andrews, Sean M. AU - Carpenter, John M. AU - Moór, Attila AU - MacGregor, Meredith A. TI - Multiwavelength Vertical Structure in the AU Mic Debris Disk: Characterizing the Collisional Cascade JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 935 PY - 2022 IS - 2 SN - 1538-4357 DO - 10.3847/1538-4357/ac80b8 UR - https://m2.mtmt.hu/api/publication/33076006 ID - 33076006 AB - Debris disks are scaled-up analogs of the Kuiper Belt in which dust is generated by collisions between planetesimals. In the collisional cascade model of debris disks, the dust lost to radiation pressure and winds is constantly replenished by grinding collisions between planetesimals. The model assumes that collisions are destructive and involve large velocities; this assumption has not been tested beyond our solar system. We present 0.″25 (≍2.4 au) resolution observations of the λ = 450 μm dust continuum emission from the debris disk around the nearby M dwarf AU Microscopii with the Atacama Large Millimeter/submillimeter Array. We use parametric models to describe the disk structure, and a Monte Carlo Markov Chain (MCMC) algorithm to explore the posterior distributions of the model parameters; we fit the structure of the disk to both our data and archival λ = 1.3 mm data (Daley et al. 2019), from which we obtain two aspect ratio measurements at 1.3 mm (h 1300 = ${0.025}_{-0.002}^{+0.008}$ ) and at 450 μm (h 450 = ${0.019}_{-0.001}^{+0.006}$ ), as well as the grain-size distribution index q = 3.03 ± 0.02. Contextualizing our aspect ratio measurements within the modeling framework laid out in Pan & Schlichting (2012), we derive a power-law index of velocity dispersion as a function of grain size p = 0.28 ± 0.06 for the AU Mic debris disk. This result implies that smaller bodies are more easily disrupted than larger bodies by collisions, which is inconsistent with the strength regime usually assumed for such small bodies. Possible explanations for this discrepancy are discussed. LA - English DB - MTMT ER -