TY - JOUR AU - Szentannai, Pál AU - Szűcs, Tibor AU - Pudleiner, Bálint AU - Fekete, Tamás TI - Transient phenomena and their consideration in load-following control of nuclear power plants JF - THERMAL SCIENCE J2 - THERM SCI VL - 2024 OnLine-First PY - 2024 IS - 00 SP - 52 PG - 14 SN - 0354-9836 DO - 10.2298/TSCI230805052S UR - https://m2.mtmt.hu/api/publication/34727699 ID - 34727699 AB - Radical changes have been happening on the source side of the electricity system due to the rolling back of large-sized fossil-fueled power plants and the coming to the front of uncontrollable renewables. As a worldwide consequence, to ensure the permanent balance of the grid, even big-sized units have to be operated in load- following mode, including also nuclear power plants. This mode is conducted by the control system, which must also consider the side effects of this rather dynamic operating mode. In this report, we show up all components of such a control system, including the process model, structural integrity assessment, and control algorithm. All the above elements are discussed on the basis of a concrete example, and the resulting control behavior of the entire system is also shown. The results demonstrated that a significant reduction in the caused thermal stresses could be achieved while keeping the control quality practically unchanged. LA - English DB - MTMT ER - TY - JOUR AU - Szűcs, Tibor AU - Pudleiner, Bálint AU - Szentannai, Pál TI - Atomerőművek terhelésváltoztatásai során ébredő tranziens hőfeszültségek számítása [Calculating the transient thermal stresses during load changes in nuclear power plants] JF - MAGYAR ENERGETIKA J2 - MAGYAR ENERGETIKA VL - 30 PY - 2023 IS - 4 SP - 21 EP - 28 PG - 8 SN - 1216-8599 UR - https://m2.mtmt.hu/api/publication/34496153 ID - 34496153 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Szentannai, Pál AU - Fekete, Tamás TI - Integrated optimization of process control and its effect on structural integrity - A systematic review JF - ENGINEERING FAILURE ANALYSIS J2 - ENG FAIL ANAL VL - 140 PY - 2022 PG - 31 SN - 1350-6307 DO - 10.1016/j.engfailanal.2022.106101 UR - https://m2.mtmt.hu/api/publication/33615124 ID - 33615124 N1 - CODEN: EFANE LA - English DB - MTMT ER - TY - CHAP AU - Szentannai, Pál AU - Fekete, Tamás ED - Lackner, Maximilian ED - Sajjadi, Baharak ED - Chen, Wei-Yin TI - Model-Based Control of Load-Following Nuclear and Conventional Power Plants for Reduced Ecological Footprint via Lifetime Extension T2 - Handbook of Climate Change Mitigation and Adaptation PB - Springer Netherlands CY - Cham SN - 9783030725808 PY - 2022 SP - 583 EP - 651 PG - 69 DO - 10.1007/978-3-030-72579-2_172 UR - https://m2.mtmt.hu/api/publication/32873994 ID - 32873994 N1 - Structural Integrity Group, Fuel and Reactor Materials Department, Centre for Energy Research, Budapest, Hungary Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary Structural Integrity Group, Fuel and Reactor Materials Department, Centre for Energy Research, Budapest, Hungary Export Date: 15 June 2023 Correspondence Address: Szentannai, P.; Structural Integrity Group, Hungary; email: szentannai.pal@ek-cer.hu AB - Life cycle assessment of utility power plants confirms that a significant and nearly unchangeable portion of their ecological footprint is generated at the beginning and end of their lives. This is especially valid for nuclear and renewable power plants with practically zero CO2 emission during operation, and also for other, traditional power plants. This is why extending the lifetime of such power plants directly and markedly contributes to climate change mitigation. Let us consider that material ageing seems to be a major cause of limited lifetime in dominant power plants. Let us also note that it is mostly affected by mechanical and thermal stresses, which are strongly influenced by the control system, the effect of which is sharpened by the load-following operation. Although the control theory offers excellent tools for handling such complex systems too, their practical applications in power plants are still on a very low level because of insufficient engineering background on plant operation, process engineering, and material ageing. The current work, summarized in this chapter, integrates all the above disciplines, starting out from the practical plant requirements and properties, extended towards an application-oriented review of matured advanced control methods. Further, a very advantageous, generally applicable structure will be outlined, which includes online (fast acting, local) and offline (more detailed, remote) modeling and control elements. Additionally, as the proposed method also improves plant efficiency, it simultaneously contributes to higher financial benefit and lower emission. LA - English DB - MTMT ER - TY - CHAP AU - Szentannai, Pál AU - Fekete, Tamás ED - Bruzzone, Agostino G. ED - Janosy, Janos Sebestyen ED - Nicoletti, Letizia ED - Zacharewicz, Gregory TI - Optimized power plant control via compound modeling of structural integrity and plant dynamics T2 - Proceedings of the 9th International Workshop on Simulation for Energy, Sustainable Development & Environment (SESDE 2021) PB - Caltek s.r.l. CY - Rende SN - 9788885741676 PY - 2021 SP - 66 EP - 69 PG - 4 DO - 10.46354/i3m.2021.sesde.008 UR - https://m2.mtmt.hu/api/publication/33615174 ID - 33615174 LA - English DB - MTMT ER - TY - JOUR AU - Al-Agha, Mohamed Sobhi Ahmed AU - Szentannai, Pál TI - Experimentally-assessed multi-phase CFD modeling of segregating gas–solid fluidized beds JF - CHEMICAL ENGINEERING RESEARCH AND DESIGN J2 - CHEM ENG RES DES VL - 172 PY - 2021 SP - 215 EP - 225 PG - 11 SN - 0263-8762 DO - 10.1016/j.cherd.2021.06.004 UR - https://m2.mtmt.hu/api/publication/32759618 ID - 32759618 LA - English DB - MTMT ER - TY - JOUR AU - Szűcs, Tibor AU - Szentannai, Pál TI - Developing an all-round combustion kinetics model for nonspherical waste-derived solid fuels JF - CHEMICAL PAPERS / CHEMICKÉ ZVESTI J2 - CHEM PAP / CHEM ZVESTI VL - 75 PY - 2021 IS - 3 SP - 921 EP - 930 PG - 10 SN - 2585-7290 DO - 10.1007/s11696-020-01352-6 UR - https://m2.mtmt.hu/api/publication/32759571 ID - 32759571 N1 - Cited By :1 Export Date: 5 July 2022 CODEN: CHPAE Correspondence Address: Szűcs, T.; Department of Energy Engineering, Hungary; email: szucs@energia.bme.hu Funding text 1: This work was performed in the frame of the FIEK_16-1-2016-0007 project, implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the FIEK_16 funding scheme. AB - The utilization of challenging solid fuels in the energy industry (especially the ones derived from wastes) has a big priority nowadays, as it is a valid option to keep the recent EU directive related to the decrease of landfills. However, there are serious technical challenges, connecting to the lack of knowledge about the behavior of these fuels in the combustion chamber. This paper discusses the specific aspects of developing particle models concerning the combustion of these non-conventional fuels. A new modeling approach is presented, using which it is possible to develop an all-round particle model that includes every significant influencing process. Moreover, it does not have any restrictions regarding the shape, size and the origin of the particle. As an integral component of this model, the distinctive aspects of intrinsic reaction kinetics related to waste fuels are presented as well. LA - English DB - MTMT ER - TY - JOUR AU - Al-Agha, Mohamed Sobhi Ahmed AU - Szentannai, Pál TI - A Conservative Macroscopic Model for Binary-mixture Fluidized Beds JF - PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING J2 - PERIOD POLYTECH CHEM ENG VL - 65 PY - 2021 IS - 4 SP - 525 EP - 535 PG - 11 SN - 0324-5853 DO - 10.3311/PPch.17420 UR - https://m2.mtmt.hu/api/publication/32403317 ID - 32403317 N1 - Export Date: 15 June 2022 Correspondence Address: Szentannai, P.; Department of Energy Engineering, 9 Műegyetem rkp, Hungary; email: szentannai@energia.bme.hu Funding details: TUDFO/51757/2019-ITM Funding details: FIEK˙16-1-2016-0007 Funding text 1: The research reported in this paper has been supported by the National Research, Development, and Innovation Fund (TUDFO/51757/2019-ITM, Thematic Excellence Program and the National Research, Development, and Innovation Fund of Hungary in the frame of FIEK˙16-1-2016-0007 (Higher Education and Industrial Cooperation Center). AB - Two approaches are commonly used for modeling the vertical mixing of binary-mixture fluidized beds, Computational Fluid Dynamics (CFD) and macroscopic modeling. A common realization of the latter one is the Gibiralo-Rowe (G-R) model, which uses the Two-Phase Theory. This macroscopic model obviously overperforms CFDs regarding computational cost; however, determining its coefficients is a still challenging issue. Although several methods were published for solving this, the general problem with most of them remains their neglecting the conservation of mass. In the present new procedure, the mass conservation is applied to correct the values of the G-R model coefficients estimated from known equations. The present model was validated on a wide variety of fluidized bed systems. The results show that this conservative and macroscopic model gives more accurate predictions than the recently published other macroscopic models, and this one is, in general, better than the CFD model from the perspective of prediction accuracy as well. LA - English DB - MTMT ER - TY - JOUR AU - Szücs, Botond AU - Al-Agha, Mohamed Sobhi Ahmed AU - Szentannai, Pál TI - Experimental study of entrainment and mixing of renewable active particles in fluidized beds JF - APPLIED SCIENCES-BASEL J2 - APPL SCI-BASEL VL - 10 PY - 2020 IS - 12 PG - 12 SN - 2076-3417 DO - 10.3390/app10124268 UR - https://m2.mtmt.hu/api/publication/32759601 ID - 32759601 LA - English DB - MTMT ER - TY - JOUR AU - Al-Agha, Mohamed Sobhi Ahmed AU - Szücs, Botond AU - Szentannai, Pál TI - Numerical study of mixing and heat transfer of SRF particles in a bubbling fluidized bed JF - JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY J2 - J THERM ANAL CALORIM VL - 142 PY - 2020 IS - 2 SP - 1087 EP - 1096 PG - 9 SN - 1388-6150 DO - 10.1007/s10973-019-09135-2 UR - https://m2.mtmt.hu/api/publication/31179550 ID - 31179550 N1 - Correspondence Address: Szucs, B.; Department of Energy Engineering, Hungary; email: szucsbotond@energia.bme.hu Funding details: 16-1- 2016-0007 Funding details: NKP-19-3-I-BME-270 Funding details: FIEK 16-1- 2016-0007 Funding details: Budapesti Műszaki és Gazdaságtudományi Egyetem, BME Funding details: Ministry of Technology, Innovation and Citizens' Services Funding text 1: Open access funding provided by Budapest University of Technology and Economics (BME). This work was supported by the National Research, Development and Innovation Fund of Hungary in the frame of FIEK 16-1- 2016-0007 (Higher Education and Industrial Cooperation Center) project and the ÚNKP-19-3-I-BME-270 New National Excellence Program of the Ministry for Innovation and Technology. A , B , C , D Coefficients (–) C D \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_{\\rm D}$$\\end{document} Drag coefficient (–) C p \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_{\\rm p}$$\\end{document} Particle specific heat ( J kg - 1 K - 1 \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hbox {J\\,kg}^{-1}\\, {\\mathrm{K}}^{-1}}$$\\end{document} ) d p \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d_{\\rm p}$$\\end{document} Particle diameter ( μ m ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\upmu \\mathrm{m}})$$\\end{document} ε \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varepsilon$$\\end{document} Void fraction (–) g Gravity acceleration ( ms - 2 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({{\\mathrm{ms}}^{-2}})$$\\end{document} h Heat transfer coefficient ( Wm - 2 K - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{Wm}^{-2}\\,\\mathrm{K}^{-1}})$$\\end{document} K gs \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_{\\rm gs}$$\\end{document} Momentum exchange coefficient ( kgm - 3 s - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{kgm}^{-3}\\,{\\rm s}^{-1}})$$\\end{document} λ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda$$\\end{document} Thermal conductivity ( Wm - 1 K - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{Wm}^{-1}{\\mathrm{K}}^{-1}})$$\\end{document} μ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu$$\\end{document} Viscosity (Pas) Nu Nusselt number = h d p λ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{hd_{\\rm p}}{\\lambda }$$\\end{document} (–) Pr Prandtl number = μ C p λ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{\\mu C_{\\rm p}}{\\lambda }$$\\end{document} (–) ρ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho$$\\end{document} Density ( kgm - 3 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{kgm}^{-3}})$$\\end{document} Re Reynolds number = ρ g d p | u g - u p | μ g \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{\\rho _{\\rm g}d_{\\rm p}|u_{\\rm g} - u_{\\rm p}|}{\\mu _{\\rm g}}$$\\end{document} (–) T Temperature ( ∘ C ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(^{\\circ }\\mathrm{C})$$\\end{document} u Velocity ( ms - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{ms}^{-1}})$$\\end{document} ψ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\psi$$\\end{document} Particle shape factor (–) Funding text 2: Open access funding provided by Budapest University of Technology and Economics (BME). This work was supported by the National Research, Development and Innovation Fund of Hungary in the frame of FIEK 16-1- 2016-0007 (Higher Education and Industrial Cooperation Center) project and the ?NKP-19-3-I-BME-270 New National Excellence Program of the Ministry for Innovation and Technology. Funding Agency and Grant Number: Budapest University of Technology and Economics (BME); National Research, Development and Innovation Fund of Hungary [FIEK 16-1- 2016-0007]; New National Excellence Program of the Ministry for Innovation and Technology [uNKP-19-3-I-BME-270] Funding text: Open access funding provided by Budapest University of Technology and Economics (BME). This work was supported by the National Research, Development and Innovation Fund of Hungary in the frame of FIEK 16-1- 2016-0007 (Higher Education and Industrial Cooperation Center) project and the uNKP-19-3-I-BME-270 New National Excellence Program of the Ministry for Innovation and Technology. LA - English DB - MTMT ER -