TY - JOUR AU - Pintér, Sándor AU - Balázs, Lajos AU - Bagoly, Zsolt AU - Tóth, László Viktor AU - Rácz, István AU - Horváth, István TI - Some statistical remarks on GRBs jointly detected by Fermi and Swift satellites JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 527 PY - 2024 IS - 3 SP - 8931 EP - 8940 PG - 10 SN - 0035-8711 DO - 10.1093/mnras/stad3236 UR - https://m2.mtmt.hu/api/publication/34418073 ID - 34418073 N1 - A TKP2021-NVA-16 számú projekt a Kulturális és Innovációs Minisztérium Nemzeti Kutatási Fejlesztési és Innovációs Alapból nyújtott támogatásával a TKP2021-NVA pályázati program finanszírozásában valósult meg. AB - We made statistical analysis of the Fermi GBM and Swift BAT observational material, accumulated over 15 years. We studied how GRB parameters (T90 duration, fluence, peak flux) that were observed by only one satellite differ from those observed by both. In the latter case, it was possible to directly compare the values of the parameters that both satellites measured. The GRBs measured by both satellites were identified using the k-nearest neighbours algorithm in Euclidean distance. In the parameter space we determined the direction in which the jointly detected GRBs differ most from those detected by only one of the instruments using linear discriminant analyses. To get the strength of the relationship between the parameters obtained from the GBM and BAT, a canonical correlation was performed. The GBM and BAT T90 distributions were fitted with a linear combination of lognormal functions. The optimal number of such functions required for fit is two for GBM and three for BAT. Contrary to the widely accepted view, we found that the number of lognormal functions required for fitting the observed distribution of GRB durations does not allow us to deduce the number of central engine types responsible for GRBs. LA - English DB - MTMT ER - TY - JOUR AU - Horváth, István AU - Bagoly, Zsolt AU - Balázs, Lajos AU - Hakkila, Jon AU - Horváth, Zsuzsa AU - Joo, Andras Peter AU - Pintér, Sándor AU - Tóth, László Viktor AU - Veres, Peter AU - Rácz, István TI - Mapping the Universe with gamma-ray bursts JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 527 PY - 2024 IS - 3 SP - 7191 EP - 7202 PG - 12 SN - 0035-8711 DO - 10.1093/mnras/stad3669 UR - https://m2.mtmt.hu/api/publication/34417072 ID - 34417072 N1 - A TKP2021-NVA-16 számú projekt a Kulturális és Innovációs Minisztérium Nemzeti Kutatási Fejlesztési és Innovációs Alapból nyújtott támogatásával a TKP2021-NVA pályázati program finanszírozásában valósult meg. AB - We explore large-scale cosmic structure using the spatial distribution of 542 gamma-ray bursts (GRBs) having accurately-measured positions and spectroscopic redshifts. Prominent cosmological clusters are identified in both the northern and southern galactic hemispheres (avoiding extinction effects in the plane of the Milky Way) using the Bootstrap Point-Radius method. The Northern Galactic hemisphere contains a significant group of four GRBs in the redshift range 0.59 ≤ z ≤ 0.62 (with a Bootstrap probability of p = 0.012) along with the previously-identified Hercules–Corona Borealis Great Wall (in the revised redshift range 0.9 ≤ z ≤ 2.1; p = 0.017). The Southern Galactic hemisphere contains the previously-identified Giant GRB Ring (p = 0.022) along with another possible cluster of 7 − 9 GRBs at 1.17 ≤ z ≤ 1.444 (p = 0.031). Additionally, both the Hercules–Corona Borealis Great Wall and the Giant GRB Ring have become more prominent as the GRB sample size has grown. The approach used here underscores the potential value of GRB clustering as a probe of large-scale cosmic structure, complementary to galaxy and quasar clustering. Because of the vast scale on which GRB clustering provides valuable insights, it is important that optical GRB monitoring continue so that additional spectroscopic redshift measurements should be obtained. LA - English DB - MTMT ER - TY - JOUR AU - Pintér, Sándor AU - Balázs, Lajos AU - Bagoly, Zsolt AU - Horváth, István TI - Gamma-Ray Bursts' redshift distribution's dependence on their duration JF - CONTRIBUTIONS OF THE ASTRONOMICAL OBSERVATORY SKALNATE PLESO J2 - CONTRIB ASTRON OBS SKALNATE PLESO VL - 53 PY - 2023 IS - 4 SP - 93 EP - 99 PG - 7 SN - 1335-1842 DO - 10.31577/caosp.2023.53.4.93 UR - https://m2.mtmt.hu/api/publication/34493609 ID - 34493609 AB - Gamma-ray bursts (GRBs) are distant, extremely energetic, short (about 0.1-1000 sec) cosmic transients, which could sample the whole observable Universe. Two of the Gamma-Ray Bursts' important properties are the duration and the distance of the burst. We analyzed these two important quantities of the phenomena. We mapped their two-dimensional distribution and explored some suspicious areas. As it is well known the short GRBs are closer than the others, hence we search for parts in the Universe where the GRBs duration differs from the others. We also analyze whether there are any areas where the redshifts are differing. LA - English DB - MTMT ER - TY - JOUR AU - Bagoly, Zsolt AU - Horváth, István AU - Rácz, István AU - Balázs, Lajos AU - Tóth, László Viktor TI - The Spatial Distribution of Gamma-Ray Bursts with Measured Redshifts from 24 Years of Observation JF - UNIVERSE J2 - UNIVERSE-BASEL VL - 8 PY - 2022 IS - 7 SP - 1 EP - 16 PG - 16 SN - 2218-1997 DO - 10.3390/universe8070342 UR - https://m2.mtmt.hu/api/publication/32977873 ID - 32977873 N1 - „A publikáció a Nemzeti Közszolgálati Egyetem 2020. évi Tématerületi Kiválóság Program keretében, a Fenntartható biztonság és társadalmi környezet elnevezésű projekt támogatásával valósult meg, az Innovációs és Technológiai Minisztérium Nemzeti Kutatási, Fejlesztési és Innovációs Alapból nyújtott támogatásával, a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal által kibocsátott támogatói okirat alapján.” Pályázat sorszáma: NKFIH-1273-6/2020 Támogató: NKFIH AB - Gamma-ray bursts (GRBs) are the most luminous objects known: they outshine their host galaxies, making them ideal candidates for probing large-scale structure. Our aim is to determine the Spatial Two-Point Correlation Function of the GRBs with spectroscopic redshifts. We used all observations till 4 June 2021, and we also split the data according to the origin of the redshift (afterglow or host galaxy). We analyzed the possible correlation between the GRB redshift and sky position. There is only one region, called the Faraway GRB Patch, where nine distant GRBs shows deviation from the randomness with an ≈1% significance, showing that the sky and the radial component of the GRB distribution could be factorized and both can be determined independently. The GRBs’ cumulative monthly distribution was used to show that it is impossible to synthesize the Sky Exposure Function, even from the perfect observational logs. We estimated the Sky Exposure Function using the Gaussian kernel, and with the radial distribution, it was used for the estimation of the Spatial Two-Point Correlation Function. Monte Carlo simulations were used to determine the Poissonian errors. Our result shows that the current Spatial Two-Point Correlation Function estimations are consistent with zero for the full and the afterglow/host galaxy datasets. LA - English DB - MTMT ER - TY - JOUR AU - Horváth, István AU - Rácz, István AU - Bagoly, Zsolt AU - Balázs, Lajos AU - Pintér, Sándor TI - Does the GRB Duration Depend on Redshift? JF - UNIVERSE J2 - UNIVERSE-BASEL VL - 8 PY - 2022 IS - 4 SP - 1 EP - 12 PG - 12 SN - 2218-1997 DO - 10.3390/universe8040221 UR - https://m2.mtmt.hu/api/publication/32773229 ID - 32773229 N1 - A publikáció a Nemzeti Közszolgálati Egyetem 2020. évi Tématerületi Kiválóság Program keretében, a Fenntartható biztonság és társadalmi környezet elnevezésű projekt támogatásával valósult meg, az Innovációs és Technológiai Minisztérium Nemzeti Kutatási, Fejlesztési és Innovációs Alapból nyújtott támogatásával, a Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal által kibocsátott támogatói okirat alapján. LA - English DB - MTMT ER - TY - JOUR AU - Tanvir, N. R. AU - Le Floc'h, E. AU - Christensen, L. AU - Caruana, J. AU - Salvaterra, R. AU - Ghirlanda, G. AU - Ciardi, B. AU - Maio, U. AU - D'Odorico, V. AU - Piedipalumbo, E. AU - Campana, S. AU - Noterdaeme, P. AU - Graziani, L. AU - Amati, L. AU - Bagoly, Zsolt AU - Balázs, Lajos AU - Basa, S. AU - Behar, E. AU - De Cia, A. AU - Valle, M. Della AU - De Pasquale, M. AU - Frontera, F. AU - Gomboc, A. AU - Gotz, D. AU - Horváth, István AU - Hudec, R. AU - Mereghetti, S. AU - O'Brien, P. T. AU - Osborne, J. P. AU - Paltani, S. AU - Rosati, P. AU - Sergijenko, O. AU - Stanway, E. R. AU - Szécsi, Dorottya AU - Tóth, László Viktor AU - Urata, Y. AU - Vergani, S. AU - Zane, S. TI - Exploration of the high-redshift universe enabled by THESEUS JF - EXPERIMENTAL ASTRONOMY J2 - EXP ASTRON VL - 52 PY - 2021 IS - 3 SP - 219 EP - 244 PG - 26 SN - 0922-6435 DO - 10.1007/s10686-021-09778-w UR - https://m2.mtmt.hu/api/publication/32152422 ID - 32152422 N1 - School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom AIM, CEA-Irfu/DAp, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France Niels Bohr Institute, University of Copenhagen, Jagtvej 128, Copenhagen N, 2200, Denmark Department of Physics and Institute of Space Sciences and Astronomy, University of Malta, Msida, MSD 2080, Malta INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, via Alfonso Corti 12, Milano, 20133, Italy INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, Merate (LC), I-23807, Italy Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, Garching, 85741, Germany INAF-Observatory of Trieste, via G. Tiepolo 11, Trieste, 34143, Italy Dipartimento di Fisica, Università degli Studi di Napoli Federico II, Naples, 80126, Italy I.N.F.N., Sez. di Napoli, Compl. Univ. Monte S. Angelo, via Cinthia, Napoli, 80126, Italy Institut d’Astrophysique de Paris, CNRS-SU, UMR 7095, 98bis bd Arago, Paris, 75014, France Dipartimento di Fisica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, Roma, 00185, Italy INAF/OAS-Bologna, via P. Gobetti 101, Bologna, I-40129, Italy Eövös University, Budapest, H-1117, Hungary CSFK Konkoly Observatory, Budapest, Hungary Department of Astronomy, Eövös University, Budapest, Hungary CNRS, CNES, LAM, Aix Marseille Universite, Marseille, France Department of Physics, Technion, Israel Department of Astronomy, University of Geneva, Chemin Pegasi 51, Versoix, 1290, Switzerland INAF-Capodimonte Observatory, Salita Moiariello 16, Napoli, 80131, Italy Department of Astronomy and Space Sciences, Istanbul University, Beyazıt, Istanbul, 34119, Turkey Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, Ferrara, I-44122, Italy Center for Astrophysics and Cosmology, University of Nova Gorica, Vipavska 13, Nova Gorica, 5000, Slovenia IRFU/Département d’Astrophysique, CEA, Université Paris-Saclay, Gif-sur-Yvette, F-91191, France University of Public Service, Budapest, Hungary Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic Astronomical Institute, Czech Academy of Sciences, Ondrejov, Czech Republic Kazan Federal University, Kazan, Russian Federation INAF / IASF-Milano, via A. Corti 12, Milano, I-20133, Italy School of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom Department of Physics and Earth Sciences, University of Ferrara, Ferrara, Italy Astronomical Observatory of Taras Shevchenko, National University of Kyiv, Observatorna str., 3, Kyiv, 04053, Ukraine Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Zabolotnoho str., 27, Kyiv, 03680, Ukraine Physical Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom Institute of Astronomy, Nicolaus Copernicus University, Toruń, 87-100, Poland I. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany Department of Astronomy, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Institute of Astronomy, National Central University, Chung-Li, 32054, Taiwan CNRS, GEPI, Observatoire de Paris, PSL University, Place Jules Janssen, Meudon, 92190, France Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, RH56NT, United Kingdom Cited By :15 Export Date: 30 January 2024 Correspondence Address: Tanvir, N.R.; School of Physics and Astronomy, University Road, United Kingdom; email: nrt3@le.ac.uk AB - At peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond z greater than or similar to 6; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts. LA - English DB - MTMT ER - TY - JOUR AU - Horváth, István AU - Szécsi, Dorottya AU - Hakkila, J AU - Szabó, Á AU - Rácz, István AU - Tóth, László Viktor AU - Pintér, Sándor AU - Bagoly, Zsolt TI - The clustering of gamma-ray bursts in the Hercules–Corona Borealis Great Wall: the largest structure in the Universe? JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 498 PY - 2020 IS - 2 SP - 2544 EP - 2553 PG - 10 SN - 0035-8711 DO - 10.1093/mnras/staa2460 UR - https://m2.mtmt.hu/api/publication/31472851 ID - 31472851 AB - The Hercules–Corona Borealis Great Wall is a statistically significant clustering of gamma-ray bursts (GRBs) around redshift 2. Motivated by recent theoretical results indicating that a maximal Universal structure size may indeed coincide with its estimated size (2–3 Gpc), we reexamine the question of this Great Wall’s existence from both observational and theoretical perspectives. Our statistical analyses confirm the clustering’s presence in the most reliable data set currently available, and we present a video showing what this data set looks like in 3D. Cosmological explanations (i.e. having to do with the distribution of gravitating matter) and astrophysical explanations (i.e. having to do with the rate of star formation over cosmic time and space) regarding the origin of such a structure are presented and briefly discussed and the role of observational bias is also discussed at length. This, together with the scientific importance of using GRBs as unique cosmological probes, emphasises the need for future missions such as the THESEUS satellite, which will provide us with unprecedentedly homogeneous data of GRBs with measured redshifts. We conclude from all this that the Hercules–Corona Borealis Great Wall may indeed be the largest structure in the Universe – but to be able to decide conclusively whether it actually exists, we need THESEUS. LA - English DB - MTMT ER - TY - JOUR AU - Kóbori, József AU - Bagoly, Zsolt AU - Balázs, Lajos TI - Kilonova rates from spherical and axisymmetrical models JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 494 PY - 2020 IS - 3 SP - 4343 EP - 4348 PG - 6 SN - 0035-8711 DO - 10.1093/mnras/staa1034 UR - https://m2.mtmt.hu/api/publication/31390672 ID - 31390672 N1 - Cited By :2 Export Date: 12 April 2023 CODEN: MNRAA Correspondence Address: Kóbori, J.; Department of Physics of Complex Systems, Pázmány P. s. 1/A, Hungary; email: jkobori@caesar.elte.hu LA - English DB - MTMT ER - TY - JOUR AU - Mike, Árpád AU - Pesti, Krisztina AU - Csaba Földi, Mátyás AU - Bagoly, Zsolt AU - Papp, Gábor AU - Lukács, Péter TI - Optimizing for Information Content on Ionflux Mercury Automated Patch Clamp JF - BIOPHYSICAL JOURNAL J2 - BIOPHYS J VL - 118 PY - 2020 IS - 3 SP - 590A EP - 591A SN - 0006-3495 DO - 10.1016/j.bpj.2019.11.3199 UR - https://m2.mtmt.hu/api/publication/31189864 ID - 31189864 LA - English DB - MTMT ER - TY - JOUR AU - Bagoly, Zsolt AU - Balázs, Lajos AU - Galgóczi, Gábor AU - Ohno, Masanori AU - Pál, András AU - Ripa, Jakub AU - Tóth, László Viktor AU - Werner, Norbert TI - Transient detection capabilities of small satellite gamma-ray detectors JF - ASTRONOMISCHE NACHRICHTEN J2 - ASTRON NACHRICH VL - 340 PY - 2019 IS - 7 SP - 681 EP - 689 PG - 9 SN - 0004-6337 DO - 10.1002/asna.201913675 UR - https://m2.mtmt.hu/api/publication/30882276 ID - 30882276 AB - The new, small satellite-based gamma-ray detectors, like Cubesats Applied for MEasuring and Localizing Transients, will provide a new wa to detect gamma transients in the multimessenger era. The efficiency an the detection capabilities of such a system will be compared wit current missions, for example, Fermi Gamma-ray Burst Monitor (GBM). W used the Fermi GBM's observed short gamma-ray burst light curve aggregated from observed discrete detector event for the simulatio input. The corresponding direction-dependent detector response matrice were used to generate photon counts and light curves around a simulate event, enabling to determine the statistics. This method can be used i the future for trigger algorithm and detector system development, an also to estimate the efficiency of the data analysis pipeline regardin the observable gamma-ray bursts' parameters as well as othe electromagnetic transients LA - English DB - MTMT ER -