TY - JOUR AU - Dhungana, G. AU - Kehoe, R. AU - Staten, R. AU - Vinkó, József AU - Wheeler, J. C. AU - Akerlof, C. AU - Doss, D. AU - Ferrante, F. V. AU - Gibson, C. A. AU - Lasker, J. AU - Marion, G. H. AU - Pandey, S. B. AU - Quimby, R. M. AU - Rykoff, E. AU - Smith, D. AU - Yuan, F. AU - Zheng, W. TI - Cosmological Distance Measurement of Twelve Nearby Supernovae IIP with ROTSE-IIIb JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 962 PY - 2024 IS - 1 PG - 18 SN - 1538-4357 DO - 10.3847/1538-4357/ad17bc UR - https://m2.mtmt.hu/api/publication/34618837 ID - 34618837 AB - We present cosmological analysis of 12 nearby (z < 0.06) Type IIP supernovae (SNe IIP) observed with the ROTSE-IIIb telescope. To achieve precise photometry, we present a new image-differencing technique that is implemented for the first time on the ROTSE SN photometry pipeline. With this method, we find up to a 20% increase in the detection efficiency and significant reduction in residual rms scatter of the SN lightcurves when compared to the previous pipeline performance. We use the published optical spectra and broadband photometry of well-studied SNe IIP to establish temporal models for ejecta velocity and photospheric temperature evolution for our SNe IIP population. This study yields measurements that are competitive with other methods even when the data are limited to a single epoch during the photospheric phase of SNe IIP. Using the fully reduced ROTSE photometry and optical spectra, we apply these models to the respective photometric epochs for each SN in the ROTSE IIP sample. This facilitates the use of the Expanding Photosphere Method (EPM) to obtain distance estimates to their respective host galaxies. We then perform cosmological parameter fitting using these EPM distances, from which we measure the Hubble constant to be 72.9(-4.3)(+5.7)kms(-1)Mpc(-1) , which is consistent with the standard Lambda CDM model values derived using other independent techniques. LA - English DB - MTMT ER - TY - JOUR AU - Siebert, M.R. AU - Kwok, L.A. AU - Johansson, J. AU - Jha, S.W. AU - Blondin, S. AU - Dessart, L. AU - Foley, R.J. AU - Hillier, D.J. AU - Larison, C. AU - Pakmor, R. AU - Temim, T. AU - Andrews, J.E. AU - Auchettl, K. AU - Badenes, C. AU - Barna, Barnabás AU - Bostroem, K.A. AU - Brenner, Newman M.J. AU - Brink, T.G. AU - Bustamante-Rosell, M.J. AU - Camacho-Neves, Y. AU - Clocchiatti, A. AU - Coulter, D.A. AU - Davis, K.W. AU - Deckers, M. AU - Dimitriadis, G. AU - Dong, Y. AU - Farah, J. AU - Filippenko, A.V. AU - Flörs, A. AU - Fox, O.D. AU - Garnavich, P. AU - Gonzalez, E.P. AU - Graur, O. AU - Hambsch, F.-J. AU - Hosseinzadeh, G. AU - Howell, D.A. AU - Hughes, J.P. AU - Kerzendorf, W.E. AU - Le, Saux X.K. AU - Maeda, K. AU - Maguire, K. AU - McCully, C. AU - Mihalenko, C. AU - Newsome, M. AU - O'Brien, J.T. AU - Pearson, J. AU - Pellegrino, C. AU - Pierel, J.D.R. AU - Polin, A. AU - Rest, A. AU - Rojas-Bravo, C. AU - Sand, D.J. AU - Schwab, M. AU - Shahbandeh, M. AU - Shrestha, M. AU - Smith, N. AU - Strolger, L.-G. AU - Szalai, Tamás AU - Taggart, K. AU - Terreran, G. AU - Terwel, J.H. AU - Tinyanont, S. AU - Valenti, S. AU - Vinkó, József AU - Wheeler, J.C. AU - Yang, Y. AU - Zheng, W. AU - Ashall, C. AU - DerKacy, J.M. AU - Galbany, L. AU - Hoeflich, P. AU - Hsiao, E. AU - de, Jaeger T. AU - Lu, J. AU - Maund, J. AU - Medler, K. AU - Morrell, N. AU - Shappee, B.J. AU - Stritzinger, M. AU - Suntzeff, N. AU - Tucker, M. AU - Wang, L. TI - Ground-based and JWST Observations of SN 2022pul. I. Unusual Signatures of Carbon, Oxygen, and Circumstellar Interaction in a Peculiar Type Ia Supernova JF - ASTROPHYSICAL JOURNAL J2 - ASTROPHYS J VL - 960 PY - 2024 IS - 1 SN - 1538-4357 DO - 10.3847/1538-4357/ad0975 UR - https://m2.mtmt.hu/api/publication/34547808 ID - 34547808 N1 - Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, 21218-2410, MD, United States Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, 08854-8019, NJ, United States Oskar Klein Centre, Department of Physics, Stockholm University, Albanova University Center, Stockholm, SE-106 91, Sweden Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France Institut d'Astrophysique de Paris, CNRS-Sorbonne Université, 98 bis boulevard Arago, Paris, F-75014, France Department of Astronomy and Astrophysics, University of California, Santa Cruz, 95064-1077, CA, United States Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, 15260, PA, United States Max-Planck Institute for Astrophysics, Garching, Germany Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08540-7219, NJ, United States Gemini Observatory, NSF's NOIRLab, 670 North A'ohoku Place, Hilo, 96720-2700, HI, United States School of Physics, The University of Melbourne, Parkville, 3010, VIC, Australia Department of Experimental Physics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, 85721-0065, AZ, United States Department of Astronomy, University of California, Berkeley, 94720-3411, CA, United States Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile Millennium Institute of Astrophysics, Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile School of Physics, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland Department of Physics and Astronomy, University of California, Davis, 1 Shields Avenue, Davis, 95616-5270, CA, United States Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, 93117-5575, CA, United States Department of Physics, University of California, Santa Barbara, 93106-9530, CA, United States GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt, D-64291, Germany Department of Physics and Astronomy, University of Notre Dame, Notre Dame, 46556, IN, United States Institute of Cosmology & Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX, United Kingdom Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, 10024-5192, NY, United States Vereniging Voor Sterrenkunde (VVS), Oostmeers 122 C, Brugge, B-8000, Belgium AAVSO, 185 Alewife Brook Parkway, Suite 410, Cambridge, 02138, MA, United States Groupe Européen d'Observations Stellaires (GEOS), 23 Parc de Levesville, Bailleau-l'Évêque, F-28300, France Bundesdeutsche Arbeitsgemeinschaft für Veränderliche Sterne (BAV), Munsterdamm 90, Berlin, D-12169, Germany Department of Physics and Astronomy, Michigan State University, East Lansing, 48824, MI, United States Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, 48824, MI, United States Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia Observatories of the Carnegie Institute for Science, 813 Santa Barbara Street, Pasadena, 91101-1232, CA, United States TAPIR, Walter Burke Institute for Theoretical Physics, 350-17, Caltech, Pasadena, 91125, CA, United States Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, 21218, MD, United States ELKH-SZTE Stellar Astrophysics Research Group, Szegedi út, Kt. 766, Baja, 6500, Hungary Isaac Newton Group (ING), Apt. de correos 321, Santa Cruz de La Palma, E-38700, Spain National Astronomical Research Institute of Thailand, 260 Moo 4, Donkaew, Maerim, Chiang Mai, 50180, Thailand Konkoly Observatory, Research Centre for Astronomy and Earth Sciences (CSFK), MTA Center of Excellence, Konkoly-Thege Miklós út 15-17, Budapest, 1121, Hungary ELTE Eötvös Loránd University, Institute of Physics and Astronomy, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary Department of Astronomy, University of Texas at Austin, Austin, 78712-1205, TX, United States Department of Physics, Virginia Tech, Blacksburg, 24061, VA, United States Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, Barcelona, E-08193, Spain Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, E-08034, Spain Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, 32306-4350, FL, United States LPNHE, CNRS/IN2P3, Sorbonne Université, Université Paris Cité, Laboratoire de Physique Nucléaire et de Hautes Énergies, Paris, F-75005, France Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF, United Kingdom Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, 96822-1839, HI, United States Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, DK-8000, Denmark Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, 77843, TX, United States George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, College Station, 77843, TX, United States Center for Cosmology and Astroparticle Physics, The Ohio State University, 191 West Woodruff Avenue, Columbus, 43215, OH, United States Export Date: 31 January 2024; Cited By: 0 LA - English DB - MTMT ER - TY - JOUR AU - Liu, Chenxu AU - Chen, Xinlei AU - Er, Xinzhong AU - Zeimann, Gregory R. AU - Vinkó, József AU - Wheeler, J. Craig AU - Cooper, Erin Mentuch AU - Davis, Dustin AU - Farrow, Daniel J. AU - Gebhardt, Karl AU - Guo, Helong AU - Hill, Gary J. AU - House, Lindsay AU - Kollatschny, Wolfram AU - Kong, Fanchuan AU - Kumar, Brajesh AU - Liu, Xiangkun AU - Tuttle, Sarah AU - Endl, Michael AU - Duke, Parker AU - Cochran, William D. AU - Zhang, Jinghua AU - Liu, Xiaowei TI - The Preexplosion Environments and the Progenitor of SN 2023ixf from the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) JF - ASTROPHYSICAL JOURNAL LETTERS J2 - ASTROPHYS J LETT VL - 958 PY - 2023 IS - 2 PG - 8 SN - 2041-8205 DO - 10.3847/2041-8213/ad0da8 UR - https://m2.mtmt.hu/api/publication/34447016 ID - 34447016 AB - Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby-Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30-2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 less than or similar to lambda less than or similar to 5540 angstrom) on the 10 m Hobby-Eberly Telescope. The fiber filling factor within +/- 30 '' of SN 2023ixf is 80% with a spatial resolution of 1 ''. The r < 5 ''.5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (Sigma(SFR)) show weak increasing trends in the radial distributions within the r < 5 ''.5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR within r < 3 '' are E( B - V) = 0.06 +/- 0.14, and Sigma(SFR) = 10(-5.44 +/- 0.66) M-circle dot yr(-1) arcsec(-2). There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of the R-23 calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (similar to Z(circle dot)). The archival deep images from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in the z band at 22.778 +/- 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u, g, r, i). The results suggest a massive progenitor of approximate to 22 M-circle dot. LA - English DB - MTMT ER - TY - JOUR AU - Goobar, Ariel AU - Johansson, Joel AU - Schulze, Steve AU - Arendse, Nikki AU - Carracedo, Ana Sagues AU - Dhawan, Suhail AU - Moertsell, Edvard AU - Fremling, Christoffer AU - Yan, Lin AU - Perley, Daniel AU - Sollerman, Jesper AU - Joseph, Remy AU - Hinds, K-Ryan AU - Meynardie, William AU - Andreoni, Igor AU - Bellm, Eric AU - Bloom, Josh AU - Collett, Thomas E. AU - Drake, Andrew AU - Graham, Matthew AU - Kasliwal, Mansi AU - Kulkarni, Shri R. AU - Lemon, Cameron AU - Miller, Adam A. AU - Neill, James D. AU - Nordin, Jakob AU - Pierel, Justin AU - Richard, Johan AU - Riddle, Reed AU - Rigault, Mickael AU - Rusholme, Ben AU - Sharma, Yashvi AU - Stein, Robert AU - Stewart, Gabrielle AU - Townsend, Alice AU - Vinkó, József AU - Wheeler, J. Craig AU - Wold, Avery TI - Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky (Jun, 10.1038/s41550-023-01981-3, 2023) JF - NATURE ASTRONOMY J2 - NAT ASTRON VL - 7 PY - 2023 SP - 1137 PG - 1 SN - 2397-3366 DO - 10.1038/s41550-023-02034-5 UR - https://m2.mtmt.hu/api/publication/34391454 ID - 34391454 LA - English DB - MTMT ER - TY - JOUR AU - Goobar, Ariel AU - Johansson, Joel AU - Schulze, Steve AU - Arendse, Nikki AU - Carracedo, Ana Sagués AU - Dhawan, Suhail AU - Mörtsell, Edvard AU - Fremling, Christoffer AU - Yan, Lin AU - Perley, Daniel AU - Sollerman, Jesper AU - Joseph, Rémy AU - Hinds, K. -Ryan AU - Meynardie, William AU - Andreoni, Igor AU - Bellm, Eric AU - Bloom, Josh AU - Collett, Thomas E. AU - Drake, Andrew AU - Graham, Matthew AU - Kasliwal, Mansi AU - Kulkarni, Shri R. AU - Lemon, Cameron AU - Miller, Adam A. AU - Neill, James D. AU - Nordin, Jakob AU - Pierel, Justin AU - Richard, Johan AU - Riddle, Reed AU - Rigault, Mickael AU - Rusholme, Ben AU - Sharma, Yashvi AU - Stein, Robert AU - Stewart, Gabrielle AU - Townsend, Alice AU - Vinkó, József AU - Wheeler, J. Craig AU - Wold, Avery TI - Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky JF - NATURE ASTRONOMY J2 - NAT ASTRON VL - 7 PY - 2023 SP - 1098 EP - 1107 PG - 10 SN - 2397-3366 DO - 10.1038/s41550-023-01981-3 UR - https://m2.mtmt.hu/api/publication/34351616 ID - 34351616 AB - Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. Here we describe how high-cadence optical observations with the Zwicky Transient Facility, with its unparalleled large field of view, led to the detection of a multiply imaged type Ia supernova, SN Zwicky, also known as SN 2022qmx. Magnified nearly 25-fold, the system was found thanks to the standard candle nature of type Ia supernovae. High-spatial-resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only θE = 0.167″ and almost identical arrival times. The small θE and faintness of the lensing galaxy are very unusual, highlighting the importance of supernovae to fully characterize the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures. LA - English DB - MTMT ER - TY - JOUR AU - Bostroem, K. Azalee AU - Pearson, Jeniveve AU - Shrestha, Manisha AU - Sand, David J. AU - Valenti, Stefano AU - Jha, Saurabh W. AU - Andrews, Jennifer E. AU - Smith, Nathan AU - Terreran, Giacomo AU - Green, Elizabeth AU - Lundquist, Michael AU - Haislip, Joshua AU - Hoang, Emily T. AU - Hosseinzadeh, Griffin AU - Janzen, Daryl AU - Jencson, Jacob E. AU - Kouprianov, Vladimir AU - Paraskeva, Emmy AU - Retamal, Nicolas E. Meza AU - Reichart, Daniel E. AU - Arcavi, Iair AU - Bonanos, Alceste Z. AU - Coughlin, Michael W. AU - Dobson, Ross AU - Farah, Joseph AU - Galbany, Lluis AU - Gutierrez, Claudia AU - Hawley, Suzanne AU - Hebb, Leslie AU - Hiramatsu, Daichi AU - Howell, D. Andrew AU - Iijima, Takashi AU - Ilyin, Ilya AU - Jhass, Kiran AU - McCully, Curtis AU - Moran, Sean AU - Morris, Brett M. AU - Mura, Alessandra C. AU - Mueller-Bravo, Tomas E. AU - Munday, James AU - Newsome, Megan AU - Pabst, Maria Th. AU - Ochner, Paolo AU - Gonzalez, Estefania Padilla AU - Pastorello, Andrea AU - Pellegrino, Craig AU - Piscarreta, Lara AU - Ravi, Aravind P. AU - Reguitti, Andrea AU - Salo, Laura AU - Vinkó, József AU - de Vos, Kellie AU - Wheeler, J. C. AU - Williams, G. Grant AU - Wyatt, Samuel TI - Early Spectroscopy and Dense Circumstellar Medium Interaction in SN 2023ixf JF - ASTROPHYSICAL JOURNAL LETTERS J2 - ASTROPHYS J LETT VL - 956 PY - 2023 IS - 1 PG - 17 SN - 2041-8205 DO - 10.3847/2041-8213/acf9a4 UR - https://m2.mtmt.hu/api/publication/34271995 ID - 34271995 AB - We present the optical spectroscopic evolution of SN 2023ixf seen in subnight cadence spectra from 1.18 to 15 days after explosion. We identify high-ionization emission features, signatures of interaction with material surrounding the progenitor star, that fade over the first 7 days, with rapid evolution between spectra observed within the same night. We compare the emission lines present and their relative strength to those of other supernovae with early interaction, finding a close match to SN 2020pni and SN 2017ahn in the first spectrum and SN 2014G at later epochs. To physically interpret our observations, we compare them to CMFGEN models with confined, dense circumstellar material around a red supergiant (RSG) progenitor from the literature. We find that very few models reproduce the blended N iii (lambda lambda 4634.0,4640.6)/C iii (lambda lambda 4647.5,4650.0) emission lines observed in the first few spectra and their rapid disappearance thereafter, making this a unique diagnostic. From the best models, we find a mass-loss rate of 10-3-10-2 M circle dot yr-1, which far exceeds the mass-loss rate for any steady wind, especially for an RSG in the initial mass range of the detected progenitor. These mass-loss rates are, however, similar to rates inferred for other supernovae with early circumstellar interaction. Using the phase when the narrow emission features disappear, we calculate an outer dense radius of circumstellar material R CSM,out approximate to 5 x 1014 cm, and a mean circumstellar material density of rho = 5.6 x 10-14 g cm-3. This is consistent with the lower limit on the outer radius of the circumstellar material we calculate from the peak H alpha emission flux, R CSM,out greater than or similar to 9 x 1013 cm. LA - English DB - MTMT ER - TY - JOUR AU - Ertini, K. AU - Folatelli, G. AU - Martinez, L. AU - Bersten, M. C. AU - Anderson, J. P. AU - Ashall, C. AU - Baron, E. AU - Bose, S. AU - Brown, P. J. AU - Burns, C. AU - DerKacy, J. M. AU - Ferrari, L. AU - Galbany, L. AU - Hsiao, E. AU - Kumar, S. AU - Lu, J. AU - Mazzali, P. AU - Morrell, N. AU - Orellana, M. AU - Pessi, P. J. AU - Phillips, M. M. AU - Piro, A. L. AU - Polin, A. AU - Shahbandeh, M. AU - Shappee, B. J. AU - Stritzinger, M. AU - Suntzeff, N. B. AU - Tucker, M. AU - Elias-Rosa, N. AU - Kuncarayakti, H. AU - Gutiérrez, C. P. AU - Kozyreva, A. AU - Müller-Bravo, T. E. AU - Chen, T. -W. AU - Hinkle, J. T. AU - Payne, A. V. AU - Székely, Péter AU - Szalai, Tamás AU - Barna, Barnabás AU - Könyves-Tóth, Réka AU - Bánhidi, D. AU - Bíró, I. B. AU - Csányi, István AU - Kriskovics, Levente AU - Pál, András AU - Szabó, Zs AU - Szakáts, Róbert AU - Vida, Krisztián AU - Vinkó, József AU - Gromadzki, M. AU - Harvey, L. AU - Nicholl, M. AU - Paraskeva, E. AU - Young, D. R. AU - Englert, B. TI - SN 2021gno: a calcium-rich transient with double-peaked light curves JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 526 PY - 2023 IS - 1 SP - 279 EP - 298 PG - 20 SN - 0035-8711 DO - 10.1093/mnras/stad2705 UR - https://m2.mtmt.hu/api/publication/34232492 ID - 34232492 N1 - Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, La Plata, B1900FWA, Argentina Instituto de Astrofísica de La Plata (IALP), CCT-CONICET-UNLP, Paseo del Bosque S/N, La Plata, B1900FWA, Argentina Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Chiba, Kashiwa, 277-8583, Japan Universidad Nacional de Río Negro. Sede Andina, Mitre 630, Bariloche, 8400, Argentina European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Vitacura, Santiago, 8320000, Chile Millennium Institute of Astrophysics MAS, Nuncio Monsenor Sotero Sanz 100, Off. 104, Providencia, Santiago, 8320000, Chile Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks, Norman, OK 73019-2061, United States Hamburger Sternwarte, Gojenbergsweg 112, Hamburg, D-21029, Germany Department of Astronomy, The Ohio State University, 140 W. 18th Avenue, Columbus, OH 43210, United States Center for Cosmology and AstroParticle Physics (CCAPP), The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, United States Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77845, United States The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St, Pasadena, CA 91101, United States Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, Barcelona, E-08193, Spain Institut d'Estudis Espacials de Catalunya (IEEC), Barcelona, E-08034, Spain Department of Physics, Florida State University, 77 Chieftain Way, Tallahassee, FL 32306, United States Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool, L3 5RF, United Kingdom Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str 1, Garching, D-85748, Germany Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, 1700000, Chile Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Capital FederalC1425FQD, Argentina TAPIR, Walter Burke Institute for Theoretical Physics, 350-17, Caltech, Pasadena, CA 91125, United States Institute for Astronomy, University of Hawai'i at Manoa, 2680 Woodlawn Dr, Honolulu, HI 96822, United States Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, DK-8000, Denmark INAF - Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, Padova, I-35122, Italy Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Turku, FI-20014, Finland Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, Heidelberg, D-69118, Germany The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, Stockholm, SE-10691, Sweden Department of Experimental Physics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary ELKH-SZTE Stellar Astrophysics Research Group, Szegediút, Kt. 766, Baja, H-6500, Hungary Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Konkoly Thege Miklós út 15-17, Budapest, H-1121, Hungary CSFK, MTA Centre of Excellence, Konkoly Thege Miklós út 15-17, Budapest, H-1121, Hungary Gothard Astrophysical Observatory, ELTE Eötvös Loránd University, Szombathely, H-9400, Hungary Baja Astronomical Observatory of University of Szeged, Szegedi út, Kt. 766, Baja, H-6500, Hungary Eötvös Loránd University, Department of Astronomy, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary Institute of Physics, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, H-1117, Hungary MIT Kavli Institute for Astrophysics and Space Research, 70 Vassar Street, Cambridge, MA 02109, United States Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, D-53121, Germany Scottish Universities Physics Alliance (SUPA), School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, United Kingdom Department of Optics & Quantum Electronics, Institute of Physics, University of Szeged, Dóm tér 9, Szeged, H-6720, Hungary Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, Warszawa, PL-00-478, Poland School of Physics, Trinity College Dublin, The University of Dublin, Dublin, Ireland Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom Department of Physics and Astronomy, University of California, One Shields Avenue, Davis, CA 95616, United States Astrophysics Research Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast, BT7 1NN, United Kingdom Combate de los Pozos 1028, C1222AAL Ciudad Autónoma de Buenos Aires, Argentina Export Date: 22 March 2024 CODEN: MNRAA Correspondence Address: Ertini, K.; Facultad de Ciencias Astronómicas y Geofísicas, Paseo del Bosque S/N, Argentina; email: keilaertini@gmail.com AB - We present extensive ultraviolet (UV) and optical photometric and optical spectroscopic follow-up of supernova (SN) 2021gno by the 'Precision Observations of Infant Supernova Explosions' (POISE) project, starting less than 2 d after the explosion. Given its intermediate luminosity, fast photometric evolution, and quick transition to the nebular phase with spectra dominated by [Ca II] lines, SN 2021gno belongs to the small family of Calcium-rich transients. Moreover, it shows double-peaked light curves, a phenomenon shared with only four other Calcium-rich events. The projected distance from the centre of the host galaxy is not as large as other objects in this family. The initial optical light-curve peaks coincide with a very quick decline of the UV flux, indicating a fast initial cooling phase. Through hydrodynamical modelling of the bolometric light curve and line velocity evolution, we found that the observations are compatible with the explosion of a highly stripped massive star with an ejecta mass of $0.8\\, M_\\odot$ and a 56Ni mass of 0.024 M⊙. The initial cooling phase (first light-curve peak) is explained by the presence of an extended circumstellar material comprising ~$10^{-2}\\, {\\rm M}_{\\odot }$ with an extension of $1100\\, R_{\\odot }$. We discuss if hydrogen features are present in both maximum-light and nebular spectra, and their implications in terms of the proposed progenitor scenarios for Calcium-rich transients. LA - English DB - MTMT ER - TY - JOUR AU - Barna, Barnabás AU - Nagy, Andrea AU - Bora, Zs. AU - Czavalinga, Donát Róbert AU - Könyves-Tóth, Réka AU - Szalai, Tamás AU - Székely, Péter AU - Zsíros, Szanna AU - Banhidi, D. AU - Biro, I. B. AU - Csanyi, I. AU - Kriskovics, Levente AU - Pál, András AU - Szabo, Zs. M. AU - Szakáts, Róbert AU - Vida, Krisztián AU - Bodola, Zsófia Réka AU - Vinkó, József TI - Three is the magic number: Distance measurement of NGC 3147 using SN 2021hpr and its siblings JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 677 PY - 2023 PG - 16 SN - 0004-6361 DO - 10.1051/0004-6361/202346395 UR - https://m2.mtmt.hu/api/publication/34221293 ID - 34221293 AB - Context. The nearby spiral galaxy NGC 3147 hosted three Type Ia supernovae (SNe Ia) in the past decades that have been the subjects of intense follow-up observations. Simultaneous analysis of their data provides a unique opportunity for testing different methods of light curve fitting and distance estimation.Aims. The detailed optical follow-up of SN 2021hpr allows us to revise the previous distance estimations to NGC 3147 and compare the widely used light curve fitting algorithms to each other. After the combination of the available and newly published data of SN 2021hpr, its physical properties can also be estimated with higher accuracy.Methods. We present and analyse new BVgriz and Swift photometry of SN 2021hpr to constrain its general physical properties. Together with its siblings, SNe 1997bq and 2008fv, we cross-compared the individual distance estimates of these three SNe given by the Spectral Adaptive Lightcurve Template (SALT) code, and we also checked their consistency with the results from the Multi-Color Light Curve Shape (MLCS) code. The early spectral series of SN 2021hpr was also fit with the radiative spectral code TARDIS to verify the explosion properties and constrain the chemical distribution of the outer ejecta.Results. After combining the distance estimates for the three SNe, the mean distance to their host galaxy, NGC 3127, is 42.5 +/- 1.0 Mpc, which matches with the distance inferred by the most up-to-date light curve fitters, SALT3 and BayeSN. We confirm that SN 2021hpr is a Branch-normal Type Ia SN that ejected -1.12 +/- 0.28 M-circle dot from its progenitor white dwarf and synthesized -0.44 +/- 0.14 M-circle dot of radioactive Ni-56. LA - English DB - MTMT ER - TY - JOUR AU - Kovács-Stermeczky, Zsófia Valéria AU - Vinkó, József TI - Fitting Optical Light Curves of Tidal Disruption Events with TiDE JF - PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC J2 - PUBL ASTRON SOC PAC VL - 135 PY - 2023 IS - 1052 PG - 11 SN - 0004-6280 DO - 10.1088/1538-3873/acf8f8 UR - https://m2.mtmt.hu/api/publication/34212437 ID - 34212437 AB - A Tidal Disruption Event (TDE) occurs when a supermassive black hole tidally disrupts a nearby passing star. The fallback accretion rate of the disrupted star may exceed the Eddington limit, which induces a supersonic outflow and a burst of luminosity, similar to an explosive event. Thus, TDEs can be detected as very luminous transients, and the number of observations for such events is increasing rapidly. In this paper we fit 20 TDE light curves with TiDE, a new public, object-oriented code designed to model optical TDE light curves. We compare our results with those obtained by the popular MOSFiT and the recently developed TDEmass codes, and discuss the possible sources of differences. LA - English DB - MTMT ER - TY - JOUR AU - Hiramatsu, Daichi AU - Tsuna, Daichi AU - Berger, Edo AU - Itagaki, Koichi AU - Goldberg, Jared A. AU - Gomez, Sebastian AU - Kishalay, De AU - Hosseinzadeh, Griffin AU - Bostroem, K. Azalee AU - Brown, Peter J. AU - Arcavi, Iair AU - Bieryla, Allyson AU - Blanchard, Peter K. AU - Esquerdo, Gilbert A. AU - Farah, Joseph AU - Howell, D. Andrew AU - Matsumoto, Tatsuya AU - McCully, Curtis AU - Newsome, Megan AU - Gonzalez, Estefania Padilla AU - Pellegrino, Craig AU - Rhee, Jaehyon AU - Terreran, Giacomo AU - Vinkó, József AU - Wheeler, J. Craig TI - From Discovery to the First Month of the Type II Supernova 2023ixf: High and Variable Mass Loss in the Final Year before Explosion JF - ASTROPHYSICAL JOURNAL LETTERS J2 - ASTROPHYS J LETT VL - 955 PY - 2023 IS - 1 PG - 13 SN - 2041-8205 DO - 10.3847/2041-8213/acf299 UR - https://m2.mtmt.hu/api/publication/34203486 ID - 34203486 N1 - Center for Astrophysics, Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, United States The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, United States TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125-0001, United States Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan Itagaki Astronomical Observatory, Yamagata, 990-2492, Japan Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, NY 10010-5902, United States Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218-2410, United States MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Ave., Cambridge, MA 02139, United States Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, United States Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77843-4242, United States George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, College Station, TX 77843, United States School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, Northwestern University, 1800 Sherman Avenue, 8th Floor, Evanston, IL 60201, United States Las Cumbres Observatory, 6740 Cortona Drive, Suite 102, Goleta, CA 93117-5575, United States Department of Physics, University of California, Santa Barbara, CA 93106-9530, United States Department of Physics, Columbia Astrophysics Laboratory, Columbia University, Pupin Hall, New York, NY 10027, United States Department of Physics, Yonsei University, Seoul, 03722, South Korea University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259, United States Konkoly Observatory, CSFK, MTA Center of Excellence, Konkoly-Thege M. út 15-17, Budapest, 1121, Hungary ELTE Eötvös Loránd University, Institute of Physics and Astronomy, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary Department of Experimental Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary Export Date: 25 October 2023 Correspondence Address: Hiramatsu, D.; Center for Astrophysics, 60 Garden Street, United States; email: daichi.hiramatsu@cfa.harvard.edu AB - We present the discovery of the Type II supernova SN 2023ixf in M101 and follow-up photometric and spectroscopic observations, respectively, in the first month and week of its evolution. Our discovery was made within a day of estimated first light, and the following light curve is characterized by a rapid rise (≈5 days) to a luminous peak ( M V ≈ − 18.2 mag) and plateau ( M V ≈ − 17.6 mag) extending to 30 days with a fast decline rate of ≈0.03 mag day −1 . During the rising phase, U − V color shows blueward evolution, followed by redward evolution in the plateau phase. Prominent flash features of hydrogen, helium, carbon, and nitrogen dominate the spectra up to ≈5 days after first light, with a transition to a higher ionization state in the first ≈2 days. Both the U − V color and flash ionization states suggest a rise in the temperature, indicative of a delayed shock breakout inside dense circumstellar material (CSM). From the timescales of CSM interaction, we estimate its compact radial extent of ∼(3–7) × 10 14 cm. We then construct numerical light-curve models based on both continuous and eruptive mass-loss scenarios shortly before explosion. For the continuous mass-loss scenario, we infer a range of mass-loss history with 0.1–1.0 M ⊙ yr −1 in the final 2−1 yr before explosion, with a potentially decreasing mass loss of 0.01–0.1 M ⊙ yr −1 in ∼0.7–0.4 yr toward the explosion. For the eruptive mass-loss scenario, we favor eruptions releasing 0.3–1 M ⊙ of the envelope at about a year before explosion, which result in CSM with mass and extent similar to the continuous scenario. We discuss the implications of the available multiwavelength constraints obtained thus far on the progenitor candidate and SN 2023ixf to our variable CSM models. LA - English DB - MTMT ER -