TY - JOUR AU - Márkus, Bence Gábor AU - Gmitra, M. AU - Dóra, Balázs AU - Csősz, Gábor AU - Fehér, Titusz AU - Szirmai, P. AU - Náfrádi, B. AU - Zólyomi, Viktor AU - Forró, L. AU - Fabian, J. AU - Simon, Ferenc TI - Ultralong 100 ns spin relaxation time in graphite at room temperature JF - NATURE COMMUNICATIONS J2 - NAT COMMUN VL - 14 PY - 2023 IS - 1 PG - 7 SN - 2041-1723 DO - 10.1038/s41467-023-38288-w UR - https://m2.mtmt.hu/api/publication/33831368 ID - 33831368 N1 - Export Date: 08 March 2024 AB - Graphite has been intensively studied, yet its electron spins dynamics remains an unresolved problem even 70 years after the first experiments. The central quantities, the longitudinal ( T 1 ) and transverse ( T 2 ) relaxation times were postulated to be equal, mirroring standard metals, but T 1 has never been measured for graphite. Here, based on a detailed band structure calculation including spin-orbit coupling, we predict an unexpected behavior of the relaxation times. We find, based on saturation ESR measurements, that T 1 is markedly different from T 2 . Spins injected with perpendicular polarization with respect to the graphene plane have an extraordinarily long lifetime of 100 ns at room temperature. This is ten times more than in the best graphene samples. The spin diffusion length across graphite planes is thus expected to be ultralong, on the scale of ~ 70 μ m, suggesting that thin films of graphite — or multilayer AB graphene stacks — can be excellent platforms for spintronics applications compatible with 2D van der Waals technologies. Finally, we provide a qualitative account of the observed spin relaxation based on the anisotropic spin admixture of the Bloch states in graphite obtained from density functional theory calculations. LA - English DB - MTMT ER - TY - JOUR AU - Fdez, Cunado Jose Luis AU - Camarero, Julio AU - Pedrosa, Francisco J. AU - Nemes, Norbert M. AU - Sanz, Mikel AU - Oujja, Mohamed AU - Rebollar, Esther AU - Marco, Jose F. AU - de, la Figuera Juan AU - Monti, Matteo AU - Castillejo, Marta AU - Fehér, Titusz AU - Nafradi, Balint AU - Forro, Laszlo AU - Bollero, Alberto TI - Evidence of anomalous switching of the in-plane magnetic easy axis with temperature in Fe3O4 film on SrTiO3:Nb by v-MOKE and ferromagnetic resonance JF - NANOSCALE J2 - NANOSCALE VL - 11 PY - 2019 IS - 42 SP - 19870 EP - 19876 PG - 7 SN - 2040-3364 DO - 10.1039/c9nr04198b UR - https://m2.mtmt.hu/api/publication/31008378 ID - 31008378 N1 - Funding Agency and Grant Number: Regional Government of Madrid through NANOMAGCOST project [P2018/NMT-4321]; Spanish Ministry of Economy and Competitiveness (MINECO) [CTQ2016-75880-P]; MINECO [RYC-2011-08069]; Sinergia grant "Mott physics beyond the Heisenberg model" of the Swiss NSF; NKFIH Grant [K119442, 2017-1.2.1-NKP-2017-00001]; BME-Nanotechnology FIKP grant of EMMI (BME FIKP-NAT); 'Severo Ochoa' Programme for Centres of Excellence in RD, MINECO [SEV-2016-0686] Funding text: This research was supported by the Regional Government of Madrid through NANOMAGCOST project (P2018/NMT-4321) and by the Spanish Ministry of Economy and Competitiveness (MINECO) through Project CTQ2016-75880-P. M. O. thanks CSIC for contract and E. R. thanks MINECO for the tenure of a Ramon y Cajal contract (No. RYC-2011-08069). The work in Lausanne was supported by the Sinergia grant "Mott physics beyond the Heisenberg model" of the Swiss NSF. The work in BUTE (Hungary) was supported by NKFIH Grant No. K119442 and 2017-1.2.1-NKP-2017-00001, and by the BME-Nanotechnology FIKP grant of EMMI (BME FIKP-NAT). IMDEA Nanoscience is supported by the 'Severo Ochoa' Programme for Centres of Excellence in R&D, MINECO [grant number SEV-2016-0686]. AB - The evolution of the magnetic anisotropy directions has been studied in a magnetite (Fe3O4) thin film grown by infrared pulsed-laser deposition on SrTiO3(100):Nb substrate. The magnetic easy axes at room temperature are found along the in-plane 100 film directions, which means a rotation of the easy axis by 45 degrees with respect to the directions typically reported for bulk magnetite and films grown on single-crystal substrates. Moreover, when undergoing the Verwey transition temperature, T-V, the easy axis orientation evolves to the 110 film directions. This anomalous behavior has been demonstrated by measuring first the angular dependence of coercivity and remanence well above and below T-V by high-resolution vectorial magneto-optical Kerr effect (v-MOKE). Ferromagnetic resonance (FMR) measurements have additionally proven a well-defined fourfold magnetic anisotropy induced during growth with confirmed easy axis directions along 100 for T > T-V and 110 for T < T-V. These results provide a clear proof of the possibility of tuning magnetic anisotropy in Fe3O4 thin films by proper control on the growth parameters and substrate choice. LA - English DB - MTMT ER - TY - JOUR AU - Márkus, Bence Gábor AU - Simon, Ferenc AU - Nagy, Károly AU - Fehér, Titusz AU - Wild, Stefan AU - Abellán, Gonzalo AU - Chacón-Torres, Julio C AU - Hirsch, Andreas AU - Hauke, Frank TI - Electronic and Magnetic Properties of Black Phosphorus JF - PHYSICA STATUS SOLIDI B-BASIC RESEARCH J2 - PHYS STAT SOL B BASIC RES VL - 254 PY - 2017 IS - 11 PG - 6 SN - 0370-1972 DO - 10.1002/pssb.201700232 UR - https://m2.mtmt.hu/api/publication/3335751 ID - 3335751 N1 - Funding Agency and Grant Number: Hungarian National Research, Development, and Innovation Office (NKFIH) Grant [K119442, K107228]; European Research Council (ERC Advanced Grant) [742145 B-PhosphoChem]; European Union Seventh Framework Programme [604391 Graphene Flagship]; Deutsche Forschungsgemeinschaft [DFG-SFB 953]; Interdisciplinary Center for Molecular Materials (ICMM); Graduate School Molecular Science (GSMS); FAU for the Emerging Talents Initiative (ETI) grant [WS16-17_Nat_04]; DRS Postdoc Fellowship Point of the NanoScale Focus Area at Freie Universitat Berlin Funding text: Work supported by the Hungarian National Research, Development, and Innovation Office (NKFIH) Grant No. K119442 and No. K107228. The authors thank the European Research Council (ERC Advanced Grant 742145 B-PhosphoChem) for financial support. The research leading to these results was partially funded by the European Union Seventh Framework Programme under grant agreement No. 604391 Graphene Flagship. We also thank the Deutsche Forschungsgemeinschaft (DFG-SFB 953 "Synthetic Carbon Allotropes," Project A1), the Interdisciplinary Center for Molecular Materials (ICMM), and the Graduate School Molecular Science (GSMS) for financial support. G. A. thanks the FAU for the Emerging Talents Initiative (ETI) grant # WS16-17_Nat_04. J. C. C.-T. thanks S. R. for the use of equipment, and acknowledge the financial support of the DRS Postdoc Fellowship Point-2014 of the NanoScale Focus Area at Freie Universitat Berlin. AB - Black phosphorus (bP) has emerged as the next member in the graphene inspired two-dimensional materials family. Its electronic and magnetic properties are studied herein using electron and nuclear magnetic resonance techniques (ESR and NMR) and microwave conductivity measurement. The latter is a unique technique to study conductivity on air sensitive samples. The ESR study indicates the absence of free charge carriers and no sign of paramagnetic defects are found. 31P NMR shows the presence of a characteristic Pake doublet structure due to the interaction between I = 1/2 nuclei. Microwave conductivity shows, in accordance with the ESR results, that black phosphorus behaves as a semiconductor and we identify extrinsic and intrinsic charge carrier contributions to the conductivity and extracted the sizes of the gaps. ESR measurement also yields that bP might find applications as a microwave absorbent. LA - English DB - MTMT ER - TY - JOUR AU - Rotarescu, C AU - Borbély-Pecze, Tibor Bors AU - Fernández-Roldan, JA AU - Trabada, DG AU - Nemes, NM AU - Fehér, Titusz AU - Bran, C AU - Vázquez, M AU - Chiriac, H AU - Lupu, N AU - Óvári, T-A AU - Chubykalo-Fesenko, O TI - Effective anisotropies in magnetic nanowires using the torque method JF - JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS J2 - J MAGN MAGN MATER VL - 443 PY - 2017 SP - 378 EP - 384 PG - 7 SN - 0304-8853 DO - 10.1016/j.jmmm.2017.07.059 UR - https://m2.mtmt.hu/api/publication/3255985 ID - 3255985 N1 - Funding Agency and Grant Number: Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCCDI) [PN 16 37 02 02]; European Commission [316194 ( NANOSENS)]; Spanish MINECO [MAT2016-76824-C3-1-R, MAT2014-52405-C02-02, MAT2013-48054-C2-1-R]; Hungarian research fund [OTKA K 107228] Funding text: Work supported by the Romanian Executive Agency for Higher Education, Research, Development and Innovation Funding (UEFISCCDI) under project PN 16 37 02 02 (Nucleu Program) and by the European Commission under Grant no. 316194 ( NANOSENS). The work of R.M., N.N., M.V and O.C.F was partially supported by Spanish MINECO Grant MAT2016- 76824-C3-1-R, MAT2014-52405-C02-02 and MAT2013-48054-C2-1- R. The work of T. F. was partially supported by the Hungarian research fund OTKA K 107228. LA - English DB - MTMT ER - TY - JOUR AU - Cabero, M AU - Nagy, Károly AU - Gallego, F AU - Rio, M AU - Cuellar, Jimenez FA AU - Tornos, J AU - Hernandez-Martin, D AU - Nemes, NM AU - Mompean, FJ AU - Garcia-Hernandez, M AU - Rivera, A AU - Sefrioui, Z AU - Fehér, Titusz AU - Varela, M AU - Leon, C AU - Santamaria, J TI - Modified magnetic anisotropy at LaCoO3/ La0.7Sr0.3MnO3 interfaces JF - APL MATERIALS J2 - APL MATER VL - 5 PY - 2017 IS - 9 PG - 7 SN - 2166-532X DO - 10.1063/1.5002090 UR - https://m2.mtmt.hu/api/publication/3251924 ID - 3251924 N1 - Funding Agency and Grant Number: Spanish MINECO [MAT2014-52405-C02-01, MAT2014-52405-C02-02]; CAM [CAM S2013/MIT-2740]; Fundacion BBVA; MINECO [MAT2015-066888-C3-3-R]; University Paris-Saclay; CNRS; Hungarian Research Fund OTKA [K107228] Funding text: Work at UCM supported by Spanish MINECO through Grant Nos. MAT2014-52405-C02-01 and MAT2014-52405-C02-02 and by CAM through Grant No. CAM S2013/MIT-2740. M.V. and M.C. acknowledge support from Fundacion BBVA and from MINECO through Grant No. MAT2015-066888-C3-3-R. J.S. thanks the University Paris-Saclay (D'Alembert program) and CNRS for financing his stay at CNRS/Thales. T.F. acknowledges support from the Hungarian Research Fund OTKA No. K107228. LA - English DB - MTMT ER - TY - JOUR AU - Szaller, Dávid AU - Kocsis, Vilmos AU - Bordács, Sándor AU - Fehér, Titusz AU - Toomas, Rõõm AU - Urmas, Nagel AU - Hans, Engelkamp AU - Kenya, Ohgushi AU - Kézsmárki, István TI - Magnetic resonances of multiferroic TbFe3(BO3)4 JF - PHYSICAL REVIEW B J2 - PHYS REV B VL - 95 PY - 2017 IS - 2 PG - 7 SN - 2469-9950 DO - 10.1103/PhysRevB.95.024427 UR - https://m2.mtmt.hu/api/publication/3186102 ID - 3186102 N1 - N1 Funding details: 00565/14/11, OTKA, Országos Tudományos Kutatási Alapprogramok N1 Funding details: K107228, OTKA, Országos Tudományos Kutatási Alapprogramok N1 Funding details: K108918, OTKA, Országos Tudományos Kutatási Alapprogramok N1 Funding details: PD 111756, OTKA, Országos Tudományos Kutatási Alapprogramok N1 Funding details: TK134, ERDF, European Regional Development Fund N1 Funding text: This project was funded by Hungarian Research Funds, OTKA Grants No. K108918, No. PD 111756, No. K107228 and Bolyai Grant No. 00565/14/11, by the institutional research funding IUT23-3 of the Estonian Ministry of Education and Research and the European Regional Development Fund Project No. TK134 (T.R. and U.N.). We acknowledge the support of the HFML-RU/FOM, member of the European Magnetic Field Laboratory. D.Sz. was supported by the NKP-16-3/III New National Excellence Program of the Ministry of Human Capacities. Funding Agency and Grant Number: Hungarian Research Funds; Bolyai Grant [00565/14/11]; Estonian Ministry of Education and Research [IUT23-3]; European Regional Development Fund Project [TK134]; HFML-RU/FOM, European Magnetic Field Laboratory; New National Excellence Program of the Ministry of Human Capacities [UNKP-16-3/III]; OTKA Grants [K108918, PD111756, K107228] Funding text: The authors are grateful for enlightening discussions with K. Penc and L. Mihaly. This project was funded by Hungarian Research Funds, OTKA Grants No. K108918, No. PD111756, No. K107228 and Bolyai Grant No. 00565/14/11, by the institutional research funding IUT23-3 of the Estonian Ministry of Education and Research and the European Regional Development Fund Project No. TK134 (T.R. and U.N.). We acknowledge the support of the HFML-RU/FOM, member of the European Magnetic Field Laboratory. D.Sz. was supported by the UNKP-16-3/III New National Excellence Program of the Ministry of Human Capacities. Department of Physics, Budapest University of Technology and Economics, Budapest, 1111, Hungary MTA-BME, Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary Condensed Matter Research Group, Hungarian Academy of Sciences, Budapest, 1111, Hungary National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, 12618, Estonia High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525 ED, Netherlands Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa-no-ha, Kashiwa, Chiba, 277-8561, Japan Cited By :1 Export Date: 26 September 2019 Összes idézések száma a WoS-ban: 0 Department of Physics, Budapest University of Technology and Economics, Budapest, 1111, Hungary MTA-BME, Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary Condensed Matter Research Group, Hungarian Academy of Sciences, Budapest, 1111, Hungary National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, 12618, Estonia High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525 ED, Netherlands Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa-no-ha, Kashiwa, Chiba, 277-8561, Japan Cited By :1 Export Date: 25 February 2020 Department of Physics, Budapest University of Technology and Economics, Budapest, 1111, Hungary MTA-BME, Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary Condensed Matter Research Group, Hungarian Academy of Sciences, Budapest, 1111, Hungary National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, 12618, Estonia High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525 ED, Netherlands Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa-no-ha, Kashiwa, Chiba, 277-8561, Japan Cited By :4 Export Date: 25 February 2021 Funding details: Haridus- ja Teadusministeerium Funding details: Hungarian Scientific Research Fund, OTKA, 00565/14/11, IUT23-3, K107228, K108918, PD 111756 Funding details: Emberi Eroforrások Minisztériuma, EMMI Funding details: European Regional Development Fund, FEDER, NKP-16-3/III, TK134 Funding text 1: This project was funded by Hungarian Research Funds, OTKA Grants No. K108918, No. PD 111756, No. K107228 and Bolyai Grant No. 00565/14/11, by the institutional research funding IUT23-3 of the Estonian Ministry of Education and Research and the European Regional Development Fund Project No. TK134 (T.R. and U.N.). We acknowledge the support of the HFML-RU/FOM, member of the European Magnetic Field Laboratory. D.Sz. was supported by the NKP-16-3/III New National Excellence Program of the Ministry of Human Capacities. Funding Agency and Grant Number: Hungarian Research FundsOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA); Bolyai GrantHungarian Academy of Sciences [00565/14/11]; Estonian Ministry of Education and ResearchMinistry of Education and Research, Estonia [IUT23-3]; European Regional Development Fund Project [TK134]; HFML-RU/FOM, European Magnetic Field Laboratory; New National Excellence Program of the Ministry of Human Capacities [UNKP-16-3/III]; OTKA GrantsOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [K108918, PD111756, K107228] Funding text: The authors are grateful for enlightening discussions with K. Penc and L. Mihaly. This project was funded by Hungarian Research Funds, OTKA Grants No. K108918, No. PD111756, No. K107228 and Bolyai Grant No. 00565/14/11, by the institutional research funding IUT23-3 of the Estonian Ministry of Education and Research and the European Regional Development Fund Project No. TK134 (T.R. and U.N.). We acknowledge the support of the HFML-RU/FOM, member of the European Magnetic Field Laboratory. D.Sz. was supported by the UNKP-16-3/III New National Excellence Program of the Ministry of Human Capacities. Department of Physics, Budapest University of Technology and Economics, Budapest, 1111, Hungary MTA-BME, Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary Condensed Matter Research Group, Hungarian Academy of Sciences, Budapest, 1111, Hungary National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn, 12618, Estonia High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525 ED, Netherlands Institute for Solid State Physics (ISSP), University of Tokyo, Kashiwa-no-ha, Kashiwa, Chiba, 277-8561, Japan Cited By :5 Export Date: 12 May 2021 LA - English DB - MTMT ER - TY - JOUR AU - Ehlers, D AU - Stasinopoulos, I AU - Kézsmárki, István AU - Fehér, Titusz AU - Tsurkan, V AU - von Nidda, HAK AU - Grundler, D AU - Loidl, A TI - Exchange anisotropy in the skyrmion host GaV4S8 JF - JOURNAL OF PHYSICS-CONDENSED MATTER J2 - J PHYS CONDENS MAT VL - 29 PY - 2017 IS - 6 PG - 8 SN - 0953-8984 DO - 10.1088/1361-648X/aa4e7e UR - https://m2.mtmt.hu/api/publication/3186085 ID - 3186085 N1 - Funding Agency and Grant Number: Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Centre [TRR 80]; Hungarian research funds [OTKA K 107228, OTKA K 108918] Funding text: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Centre TRR 80: From Electronic Correlations to Functionality (Augsburg, Munich, Stuttgart) and by the Hungarian research funds OTKA K 107228 and OTKA K 108918. The authors wish to thank D Vieweg for performing magnetometry and S Bordacs and J Sichelschmidt for fruitful discussions. Experimentalphysik v, Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Department of Physics, Budapest University of Technology and Economics, MTA-BME Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, MTA-BME Lendület Spintronics Research Group, Budapest, 1111, Hungary Institute of Applied Physics, Academy of Sciences of Moldova, Republica Moldova, Chisinau, MD-2028, Moldova Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland Cited By :7 Export Date: 26 September 2019 CODEN: JCOME Összes idézések száma a WoS-ban: 0 Experimentalphysik v, Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Department of Physics, Budapest University of Technology and Economics, MTA-BME Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, MTA-BME Lendület Spintronics Research Group, Budapest, 1111, Hungary Institute of Applied Physics, Academy of Sciences of Moldova, Republica Moldova, Chisinau, MD-2028, Moldova Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland Cited By :7 Export Date: 25 February 2020 CODEN: JCOME Experimentalphysik v, Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Department of Physics, Budapest University of Technology and Economics, MTA-BME Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, MTA-BME Lendület Spintronics Research Group, Budapest, 1111, Hungary Institute of Applied Physics, Academy of Sciences of Moldova, Republica Moldova, Chisinau, MD-2028, Moldova Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland Cited By :11 Export Date: 26 February 2021 CODEN: JCOME Funding details: Deutsche Forschungsgemeinschaft, DFG Funding details: Hungarian Scientific Research Fund, OTKA, K 107228, K 108918 Funding text 1: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via the Transregional Collaborative Research Centre TRR 80: From Electronic Correlations to Functionality (Augsburg, Munich, Stuttgart) and by the Hungarian research funds OTKA K 107228 and OTKA K 108918. Experimentalphysik v, Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Department of Physics, Budapest University of Technology and Economics, MTA-BME Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, MTA-BME Lendület Spintronics Research Group, Budapest, 1111, Hungary Institute of Applied Physics, Academy of Sciences of Moldova, Republica Moldova, Chisinau, MD-2028, Moldova Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland Cited By :12 Export Date: 12 May 2021 CODEN: JCOME Experimentalphysik v, Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Department of Physics, Budapest University of Technology and Economics, MTA-BME Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, MTA-BME Lendület Spintronics Research Group, Budapest, 1111, Hungary Institute of Applied Physics, Academy of Sciences of Moldova, Republica Moldova, Chisinau, MD-2028, Moldova Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland Cited By :12 Export Date: 17 May 2021 CODEN: JCOME Experimentalphysik v, Zentrum für Elektronische Korrelationen und Magnetismus, Universität Augsburg, 86135 Augsburg, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Department of Physics, Budapest University of Technology and Economics, MTA-BME Lendület Magneto-optical Spectroscopy Research Group, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, MTA-BME Lendület Spintronics Research Group, Budapest, 1111, Hungary Institute of Applied Physics, Academy of Sciences of Moldova, Republica Moldova, Chisinau, MD-2028, Moldova Laboratory of Nanoscale Magnetic Materials and Magnonics (LMGN), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland Cited By :13 Export Date: 7 June 2021 CODEN: JCOME AB - Using ferromagnetic resonance spectroscopy at 34 GHz we explored the magnetic anisotropy of single-crystalline GaV4S8 in the field-polarized magnetic state. We describe the data in terms of an easy-axis type uniaxial anisotropy with an anisotropy constant K-1 = 1.6 . 10(5) erg cm(-3) at 2 K, corresponding to a relative exchange anisotropy Delta J/J approximate to 5%, and about 1.0 . 10(5) erg cm(3) near 11 K, i.e. at temperatures where the skyrmion-lattice phase was recently discovered. The relatively large value of K-1 explains the confinement of the skyrmion tubes to the < 1 1 1 > easy axes. A distinct set of resonances in the spectra is attributed to the co-existence of different rhombohedral domains. Complementary broadband spectroscopy demonstrates that non-collinear spin states may sensitively be detected by electron spin resonance techniques. LA - English DB - MTMT ER - TY - JOUR AU - Náfrádi, Bálint AU - Antal, Ágnes AU - Fehér, Titusz AU - Kiss, László Ferenc AU - Mézière, C AU - Batail, P AU - Forró, L AU - Jánossy, András TI - Frustration-induced one-dimensionality in the isosceles triangular antiferromagnetic lattice of δ -(EDT-TTF- CONMe2)2AsF6 JF - PHYSICAL REVIEW B J2 - PHYS REV B VL - 94 PY - 2016 IS - 17 PG - 6 SN - 2469-9950 DO - 10.1103/PhysRevB.94.174413 UR - https://m2.mtmt.hu/api/publication/3141160 ID - 3141160 LA - English DB - MTMT ER - TY - JOUR AU - D, Ehlers AU - I, Stasinopoulos AU - V, Tsurkan AU - H, -A Krug von Nidda AU - Fehér, Titusz AU - A, Leonov AU - Kézsmárki, István AU - D, Grundler AU - A, Loidl TI - Skyrmion dynamics under uniaxial anisotropy JF - PHYSICAL REVIEW B J2 - PHYS REV B VL - 94 PY - 2016 IS - 1 PG - 6 SN - 2469-9950 DO - 10.1103/PhysRevB.94.014406 UR - https://m2.mtmt.hu/api/publication/3096319 ID - 3096319 N1 - Összes idézések száma a WoS-ban: 0 Experimentalphysik v, Elektronische Korrelationen und Magnetismus, Universität Augsburg, Augsburg, 86135, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, 2028, Moldova Department of Physics, Budapest Univ. of Technol. and Econ. and MTA-BME Lendulet Magneto-optical Spectrosc. Research Group, Budapest, 1111, Hungary IFW Dresden, Postfach 270016, Dresden, 01171, Germany EPFL STI IMX LMGN, MXC 241, Station 12, Lausanne, 1015, Switzerland Cited By :21 Export Date: 25 February 2020 Experimentalphysik v, Elektronische Korrelationen und Magnetismus, Universität Augsburg, Augsburg, 86135, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, 2028, Moldova Department of Physics, Budapest Univ. of Technol. and Econ. and MTA-BME Lendulet Magneto-optical Spectrosc. Research Group, Budapest, 1111, Hungary IFW Dresden, Postfach 270016, Dresden, 01171, Germany EPFL STI IMX LMGN, MXC 241, Station 12, Lausanne, 1015, Switzerland Cited By :30 Export Date: 26 February 2021 Experimentalphysik v, Elektronische Korrelationen und Magnetismus, Universität Augsburg, Augsburg, 86135, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, 2028, Moldova Department of Physics, Budapest Univ. of Technol. and Econ. and MTA-BME Lendulet Magneto-optical Spectrosc. Research Group, Budapest, 1111, Hungary IFW Dresden, Postfach 270016, Dresden, 01171, Germany EPFL STI IMX LMGN, MXC 241, Station 12, Lausanne, 1015, Switzerland Cited By :32 Export Date: 12 May 2021 Experimentalphysik v, Elektronische Korrelationen und Magnetismus, Universität Augsburg, Augsburg, 86135, Germany Lehrstuhl für Physik Funktionaler Schichtsysteme, Technische Universität München, Physik Department, München, 85748, Germany Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau, 2028, Moldova Department of Physics, Budapest Univ. of Technol. and Econ. and MTA-BME Lendulet Magneto-optical Spectrosc. Research Group, Budapest, 1111, Hungary IFW Dresden, Postfach 270016, Dresden, 01171, Germany EPFL STI IMX LMGN, MXC 241, Station 12, Lausanne, 1015, Switzerland Cited By :32 Export Date: 7 June 2021 LA - English DB - MTMT ER - TY - JOUR AU - Antal, Ágnes AU - Fehér, Titusz AU - Náfrádi, Bálint AU - Forro, L AU - Jánossy, András TI - Two-dimensional Magnetism in kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl, a Spin-1/2 Heisenberg Antiferromagnet with Dzyaloshinskii-Moriya Interaction JF - JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN J2 - J PHYS SOC JPN VL - 84 PY - 2015 IS - 12 PG - 6 SN - 0031-9015 DO - 10.7566/JPSJ.84.124704 UR - https://m2.mtmt.hu/api/publication/3000542 ID - 3000542 N1 - Funding Agency and Grant Number: Hungarian National Research FundOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [OTKA K107228] Funding text: We are indebted to Professor F. Mila (EPFL) for stimulating discussions and acknowledge the Hungarian National Research Fund OTKA K107228 and the Swiss NSF and its NCCR "MaNEP". Department of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, H-1111, Hungary Department of Physics, Budapest University of Technology and Economics, MTA-BME Condensed Matter Research Group, MTA-BME Lendület Magneteo-optical Research Group, Budafoki út 8, Budapest, H-1111, Hungary Institute of Physics of Complex Matter, FBS, Swiss Federal Institute of Technology (EPFL), Lausanne, CH-1015, Switzerland Cited By :3 Export Date: 4 May 2020 CODEN: JUPSA Department of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, H-1111, Hungary Department of Physics, Budapest University of Technology and Economics, MTA-BME Condensed Matter Research Group, MTA-BME Lendület Magneteo-optical Research Group, Budafoki út 8, Budapest, H-1111, Hungary Institute of Physics of Complex Matter, FBS, Swiss Federal Institute of Technology (EPFL), Lausanne, CH-1015, Switzerland Cited By :7 Export Date: 17 May 2021 CODEN: JUPSA AB - The finite phase transition temperature, T-N, of quasi two-dimensional (2D) Heisenberg antiferromagnetic (AF) crystals results from in-plane anisotropy or coupling between layers. It is usually not known which is the determining factor when both are weak. We show by an electron spin resonance experiment that in the quasi 2D antiferromagnetic crystal,kappa-(BEDT-TTF)(2)Cu[N(CN)(2)] Cl, TN is determined by in-plane anisotropy while interlayer coupling plays a minor role. The compound has a large isotropic Heisenberg exchange interaction between sites with S = 1/2 spins. The Dzyaloshinskii-Moriya (DM) interaction is the main source of anisotropy, while in-plane anisotropy and the interlayer coupling are very weak. The external-field field-induced static and fluctuating AF magnetizations are independent in adjacent layers above the (zero-field) ordering temperature. LA - English DB - MTMT ER -