TY - JOUR AU - Chartrand, Thomas AU - Dalley, Rachel AU - Close, Jennie AU - Goriounova, Natalia A. AU - Lee, Brian R. AU - Mann, Rusty AU - Miller, Jeremy A. AU - Molnár, Gábor AU - Mukora, Alice AU - Alfiler, Lauren AU - Baker, Katherine AU - Bakken, Trygve E. AU - Berg, Jim AU - Bertagnolli, Darren AU - Braun, Thomas AU - Brouner, Krissy AU - Casper, Tamara AU - Csajbók, Éva AU - Dee, Nick AU - Egdorf, Tom AU - Enstrom, Rachel AU - Galakhova, Anna A. AU - Gary, Amanda AU - Gelfand, Emily AU - Goldy, Jeff AU - Hadley, Kristen AU - Heistek, Tim S. AU - Hill, DiJon AU - Jorstad, Nik AU - Kim, Lisa AU - Kocsis, Ágnes Katalin AU - Kruse, Lauren AU - Kunst, Michael AU - Leon, Gabriela AU - Long, Brian AU - Mallory, Matthew AU - McGraw, Medea AU - McMillen, Delissa AU - Melief, Erica J. AU - Mihut, Norbert AU - Ng, Lindsay AU - Nyhus, Julie AU - Oláh, Gáspár AU - Ozsvár, Attila AU - Omstead, Victoria AU - Péterfi, Zoltán Attila AU - Pom, Alice AU - Potekhina, Lydia AU - Rajanbabu, Ramkumar AU - Rózsa, Márton AU - Ruiz, Augustin AU - Sandle, Joanna Grace AU - Sunkin, Susan M. AU - Szöts, Ildikó AU - Tieu, Michael AU - Tóth, Martin AU - Trinh, Jessica AU - Vargas, Sara AU - Vumbaco, David AU - Williams, Grace AU - Wilson, Julia AU - Yao, Zizhen AU - Barzó, Pál AU - Cobbs, Charles AU - Ellenbogen, Richard G. AU - Esposito, Luke AU - Ferreira, Manuel AU - Gouwens, Nathan W. AU - Grannan, Benjamin AU - Gwinn, Ryder P. AU - Hauptman, Jason S. AU - Jarsky, Tim AU - Keene, C. Dirk AU - Ko, Andrew L. AU - Koch, Christof AU - Ojemann, Jeffrey G. AU - Patel, Anoop AU - Ruzevick, Jacob AU - Silbergeld, Daniel L. AU - Smith, Kimberly AU - Sorensen, Staci A. AU - Tasic, Bosiljka AU - Ting, Jonathan T. AU - Waters, Jack AU - de Kock, Christiaan P.J. AU - Mansvelder, Huib D. AU - Tamás, Gábor AU - Zeng, Hongkui AU - Kalmbach, Brian AU - Lein, Ed S. TI - Morphoelectric and transcriptomic divergence of the layer 1 interneuron repertoire in human versus mouse neocortex JF - SCIENCE J2 - SCIENCE VL - 382 PY - 2023 IS - 6667 PG - 19 SN - 0036-8075 DO - 10.1126/science.adf0805 UR - https://m2.mtmt.hu/api/publication/34196545 ID - 34196545 N1 - Allen Institute for Brain Science, Seattle, WA, United States Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands Research Group for Cortical Microcircuits of the Hungarian Academy of Science, University of Szeged, Szeged, Hungary byte physics, Berlin, Germany Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States Department of Neurosurgery, University of Szeged, Szeged, Hungary Swedish Neuroscience Institute, Seattle, WA, United States Department of Neurological Surgery, University of Washington, Seattle, WA, United States Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States Washington National Primate Research Center, University of Washington, Seattle, WA, United States Export Date: 10 November 2023; Cited By: 0 AB - Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit. LA - English DB - MTMT ER - TY - JOUR AU - Rózsa, Márton AU - Tóth, Martin AU - Oláh, Gáspár AU - Baka, Judith AU - Lákovics, Rajmund AU - Barzó, Pál AU - Tamás, Gábor TI - Temporal disparity of action potentials triggered in axon initial segments and distal axons in the neocortex JF - SCIENCE ADVANCES J2 - SCI ADV VL - 9 PY - 2023 IS - 41 PG - 10 SN - 2375-2548 DO - 10.1126/sciadv.ade4511 UR - https://m2.mtmt.hu/api/publication/34196534 ID - 34196534 AB - Neural population activity determines the timing of synaptic inputs, which arrive to dendrites, cell bodies, and axon initial segments (AISs) of cortical neurons. Action potential initiation in the AIS (AIS-APs) is driven by input integration, and the phase preference of AIS-APs during network oscillations is characteristic to cell classes. Distal regions of cortical axons do not receive synaptic inputs, yet experimental induction protocols can trigger retroaxonal action potentials (RA-APs) in axons distal from the soma. We report spontaneously occurring RA-APs in human and rodent cortical interneurons that appear uncorrelated to inputs and population activity. Network-linked triggering of AIS-APs versus input-independent timing of RA-APs of the same interneurons results in disparate temporal contribution of a single cell to in vivo network operation through perisomatic and distal axonal firing. LA - English DB - MTMT ER - TY - JOUR AU - Horváth, Edit AU - Bela, Krisztina AU - Kulman, Kitti AU - Faragó, Nóra AU - Riyazuddin, Riyazuddin AU - Gallé, Ágnes AU - Puskás, László AU - Csiszár, Jolán TI - Glutathione Transferases are Involved in Salicylic Acid-Induced Transcriptional Reprogramming JF - JOURNAL OF PLANT GROWTH REGULATION J2 - J PLANT GROWTH REGUL VL - 42 PY - 2023 IS - 7 SP - 4497 EP - 4510 PG - 14 SN - 0721-7595 DO - 10.1007/s00344-023-10915-2 UR - https://m2.mtmt.hu/api/publication/33647921 ID - 33647921 N1 - Funding Agency and Grant Number: University of Szeged; Hungarian National Research, Development and Innovation Office [NKFIH K 125265, PD 131884, PD 131909]; University of Szeged Open Access Fund [5796] Funding text: Open access funding provided by University of Szeged. This study was supported by the Hungarian National Research, Development and Innovation Office [Grant Numbers: NKFIH K 125265, PD 131884, and PD 131909]. OA was supported by the University of Szeged Open Access Fund, Grant Number: 5796. AB - Salicylic acid (SA) plays a crucial role not only in defence against pathogen attacks, but also in abiotic stress responses. Recently, some key steps of SA signalling outlined the importance of redox state-dependent processes. This study explores the role of glutathione transferases (GSTs) in the transcriptional reprogramming of redox status-related genes in seven-day-old wild type and Atgst mutant Arabidopsis thaliana plants. The timing of redox changes, detected by the redox-sensitive green fluorescent protein (roGFP2), differed in wild type roots treated with 10 μM or 100 μM SA. Our results verified how the applied SA concentrations had different effect on the expression of oxidative stress- and redox-related genes, among them on the expression of AtGSTF8 and AtGSTU19 genes. Lower vitality and less negative E GSH values were specific characteristics of the Atgst mutants compared to the wild type plants throughout the experiment. Changes in the redox potential were only modest in the mutants after SA treatments. A slightly modified gene expression pattern was observed in control conditions and after 1 h of SA treatments in Atgst mutants compared to Col-0 roots. These data originating from the whole roots provide indirect evidence for the role of the investigated AtGSTF8 and AtGSTU19 isoenzymes in the transduction of the redox signal. Our results demonstrate that the investigated Arabidopsis GSTs have a role in maintaining the levels of reactive oxygen species- and redox homeostasis and are involved in transcriptional reprogramming in the roots. LA - English DB - MTMT ER - TY - JOUR AU - Szegedi, Viktor AU - Bakos , Emőke AU - Furdan, Szabina AU - H. Kovács, Bálint Barna AU - Varga, Dániel AU - Erdélyi, Miklós AU - Barzó, Pál AU - Szűcs, Attila AU - Tamás, Gábor AU - Lamsa, Karri TI - HCN channels at the cell soma ensure the rapid electrical reactivity of fast-spiking interneurons in human neocortex JF - PLOS BIOLOGY J2 - PLOS BIOL VL - 21 PY - 2023 IS - 2 PG - 33 SN - 1544-9173 DO - 10.1371/journal.pbio.3002001 UR - https://m2.mtmt.hu/api/publication/33644822 ID - 33644822 N1 - Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary Hungarian Centre of Excellence for Molecular Medicine Research Group for Human neuron physiology and therapy, Szeged, Hungary Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary Department of Neurosurgery, University of Szeged, Szeged, Hungary Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Budapest, Hungary MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary Export Date: 26 May 2023 CODEN: PBLIB Correspondence Address: Lamsa, K.; Department of Physiology, Hungary; email: klamsa@bio.u-szeged.hu AB - Accumulating evidence indicates that there are substantial species differences in the properties of mammalian neurons, yet theories on circuit activity and information processing in the human brain are based heavily on results obtained from rodents and other experimental animals. This knowledge gap may be particularly important for understanding the neocortex, the brain area responsible for the most complex neuronal operations and showing the greatest evolutionary divergence. Here, we examined differences in the electrophysiological properties of human and mouse fast-spiking GABAergic basket cells, among the most abundant inhibitory interneurons in cortex. Analyses of membrane potential responses to current input, pharmacologically isolated somatic leak currents, isolated soma outside-out patch recordings, and immunohistochemical staining revealed that human neocortical basket cells abundantly express hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms HCN1 and HCN2 at the cell soma membrane, whereas these channels are sparse at the rodent basket cell soma membrane. Antagonist experiments showed that HCN channels in human neurons contribute to the resting membrane potential and cell excitability at the cell soma, accelerate somatic membrane potential kinetics, and shorten the lag between excitatory postsynaptic potentials and action potential generation. These effects are important because the soma of human fast-spiking neurons without HCN channels exhibit low persistent ion leak and slow membrane potential kinetics, compared with mouse fast-spiking neurons. HCN channels speed up human cell membrane potential kinetics and help attain an input–output rate close to that of rodent cells. Computational modeling demonstrated that HCN channel activity at the human fast-spiking cell soma membrane is sufficient to accelerate the input–output function as observed in cell recordings. Thus, human and mouse fast-spiking neurons exhibit functionally significant differences in ion channel composition at the cell soma membrane to set the speed and fidelity of their input–output function. These HCN channels ensure fast electrical reactivity of fast-spiking cells in human neocortex. LA - English DB - MTMT ER - TY - JOUR AU - Berg, J. AU - Sorensen, S.A. AU - Ting, J.T. AU - Miller, J.A. AU - Chartrand, T. AU - Buchin, A. AU - Bakken, T.E. AU - Budzillo, A. AU - Dee, N. AU - Ding, S.-L. AU - Gouwens, N.W. AU - Hodge, R.D. AU - Kalmbach, B. AU - Lee, C. AU - Lee, B.R. AU - Alfiler, L. AU - Baker, K. AU - Barkan, E. AU - Beller, A. AU - Berry, K. AU - Bertagnolli, D. AU - Bickley, K. AU - Bomben, J. AU - Braun, T. AU - Brouner, K. AU - Casper, T. AU - Chong, P. AU - Crichton, K. AU - Dalley, R. AU - de, Frates R. AU - Desta, T. AU - Lee, S.D. AU - D’Orazi, F. AU - Dotson, N. AU - Egdorf, T. AU - Enstrom, R. AU - Farrell, C. AU - Feng, D. AU - Fong, O. AU - Furdan, Szabina AU - Galakhova, A.A. AU - Gamlin, C. AU - Gary, A. AU - Glandon, A. AU - Goldy, J. AU - Gorham, M. AU - Goriounova, N.A. AU - Gratiy, S. AU - Graybuck, L. AU - Gu, H. AU - Hadley, K. AU - Hansen, N. AU - Heistek, T.S. AU - Henry, A.M. AU - Heyer, D.B. AU - Hill, D.J. AU - Hill, C. AU - Hupp, M. AU - Jarsky, T. AU - Kebede, S. AU - Keene, L. AU - Kim, L. AU - Kim, M.-H. AU - Kroll, M. AU - Latimer, C. AU - Levi, B.P. AU - Link, K.E. AU - Mallory, M. AU - Mann, R. AU - Marshall, D. AU - Maxwell, M. AU - McGraw, M. AU - McMillen, D. AU - Melief, E. AU - Mertens, E.J. AU - Mezei, L. AU - Mihut, Norbert AU - Mok, S. AU - Molnár, Gábor AU - Mukora, A. AU - Ng, L. AU - Ngo, K. AU - Nicovich, P.R. AU - Nyhus, J. AU - Oláh, Gáspár AU - Oldre, A. AU - Omstead, V. AU - Ozsvár, Attila AU - Park, D. AU - Peng, H. AU - Pham, T. AU - Pom, C.A. AU - Potekhina, L. AU - Rajanbabu, R. AU - Ransford, S. AU - Reid, D. AU - Rimorin, C. AU - Ruiz, A. AU - Sandman, D. AU - Sulc, J. AU - Sunkin, S.M. AU - Szafer, A. AU - Szemenyei, Viktor AU - Thomsen, E.R. AU - Tieu, M. AU - Torkelson, A. AU - Trinh, J. AU - Tung, H. AU - Wakeman, W. AU - Waleboer, F. AU - Ward, K. AU - Wilbers, R. AU - Williams, G. AU - Yao, Z. AU - Yoon, J.-G. AU - Anastassiou, C. AU - Arkhipov, A. AU - Barzó, Pál AU - Bernard, A. AU - Cobbs, C. AU - de, Witt Hamer P.C. AU - Ellenbogen, R.G. AU - Esposito, L. AU - Ferreira, M. AU - Gwinn, R.P. AU - Hawrylycz, M.J. AU - Hof, P.R. AU - Idema, S. AU - Jones, A.R. AU - Keene, C.D. AU - Ko, A.L. AU - Murphy, G.J. AU - Ng, L. AU - Ojemann, J.G. AU - Patel, A.P. AU - Phillips, J.W. AU - Silbergeld, D.L. AU - Smith, K. AU - Tasic, B. AU - Yuste, R. AU - Segev, I. AU - de, Kock C.P.J. AU - Mansvelder, H.D. AU - Tamás, Gábor AU - Zeng, H. AU - Koch, C. AU - Lein, E.S. TI - Human neocortical expansion involves glutamatergic neuron diversification JF - NATURE J2 - NATURE VL - 598 PY - 2021 IS - 7879 SP - 151 EP - 158 PG - 8 SN - 0028-0836 DO - 10.1038/s41586-021-03813-8 UR - https://m2.mtmt.hu/api/publication/32467760 ID - 32467760 N1 - Allen Institute for Brain Science, Seattle, WA, United States Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States Department of Pathology, University of Washington, Seattle, WA, United States byte physics, Berlin, Germany MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy, and Neuroscience, University of Szeged, Szeged, Hungary Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit, Amsterdam, Netherlands Swedish Neuroscience Institute, Seattle, WA, United States Department of Neurosurgery, University of Szeged, Szeged, Hungary Cancer Center Amsterdam, Brain Tumor Center, Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands Department of Neurological Surgery, University of Washington, Seattle, WA, United States Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States NeuroTechnology Center, Columbia University, New York, NY, United States Edmond and Lily Safra Center for Brain Sciences and Department of Neurobiology, The Hebrew University Jerusalem, Jerusalem, Israel Cited By :1 Export Date: 26 October 2021 CODEN: NATUA Correspondence Address: Lein, E.S.; Allen Institute for Brain ScienceUnited States; email: Edl@alleninstitute.org LA - English DB - MTMT ER - TY - JOUR AU - Wang, Kai-Yi AU - Wu, Jei-Wei AU - Cheng, Jen-Kun AU - Chen, Chun-Chung AU - Wong, Wai-Yi AU - Averkin, Róbert AU - Tamás, Gábor AU - Nakazawa, Kazu AU - Lien, Cheng-Chang TI - Elevation of hilar mossy cell activity suppresses hippocampal excitability and avoidance behavior JF - CELL REPORTS J2 - CELL REP VL - 36 PY - 2021 IS - 11 PG - 19 SN - 2211-1247 DO - 10.1016/j.celrep.2021.109702 UR - https://m2.mtmt.hu/api/publication/32250210 ID - 32250210 N1 - Funding Agency and Grant Number: Brain Research Center, National Yang Ming Chiao Tung University from the Featured Areas Research Center Program; Ministry of Science and Technology (MOST) in TaiwanMinistry of Science and Technology, Taiwan [106-2320-B-010-011-MY3, 106-2923-B-010-001-MY3, 108-2923-B-010001-MY2, 108-2911-I-010-504, 108-2321-B-010-009-MY2, 108-2320-B010-026-MY3, 108-2638-B-010-002-MY2, 110-2321-B-010-006, 105-2911-I-010-508]; National Health Research InstitutesNational Health Research Institutes, Japan [NHRI-EX110-10814NI] Funding text: We thank F. Ferraguti (University of Innsbruck, Austria), A. Dominique (University of Liege, Belgium), H.J. Cheng (Academia Sinica, Taiwan), H. Lu (George Washington University, USA), C.H. Wang (RIKEN, Japan), and J. Song (University of North Carolina, USA) for commenting on an earlier version of the manuscript, and all of the members of the Lien lab for insightful discussions. This work was financially supported by the Brain Research Center, National Yang Ming Chiao Tung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education in Taiwan, National Health Research Institutes (NHRI-EX110-10814NI), and the Ministry of Science and Technology (MOST; 106-2320-B-010-011-MY3, 106-2923-B-010-001-MY3, 108-2923-B-010001-MY2, 108-2911-I-010-504, 108-2321-B-010-009-MY2, 108-2320-B010-026-MY3, 108-2638-B-010-002-MY2, 110-2321-B-010-006, MOSTHAS Project-based Personnel Exchange Program 105-2911-I-010-508) in Taiwan. AB - Modulation of hippocampal dentate gyrus (DG) excitability regulates anxiety. In the DG, glutamatergic mossy cells (MCs) receive the excitatory drive from principal granule cells (GCs) and mediate the feedback excitation and inhibition of GCs. However, the circuit mechanism by which MCs regulate anxiety-related information routing through hippocampal circuits remains unclear. Moreover, the correlation between MC activity and anxiety states is unclear. In this study, we first demonstrate, by means of calcium fiber photometry, that MC activity in the ventral hippocampus (vHPC) of mice increases while they explore anxiogenic environments. Next, juxtacellular recordings reveal that optogenetic activation of MCs preferentially recruits GABAergic neurons, thereby suppressing GCs and ventral CA1 neurons. Finally, chemogenetic excitation of MCs in the vHPC reduces avoidance behaviors in both healthy and anxious mice. These results not only indicate an anxiolytic role of MCs but also suggest that MCs may be a potential therapeutic target for anxiety disorders. LA - English DB - MTMT ER - TY - JOUR AU - Ozsvár, Attila AU - Komlósi, Gergely AU - Oláh, Gáspár AU - Baka, Judith AU - Molnár, Gábor AU - Tamás, Gábor TI - Predominantly linear summation of metabotropic postsynaptic potentials follows coactivation of neurogliaform interneurons JF - ELIFE J2 - ELIFE VL - 10 PY - 2021 PG - 25 SN - 2050-084X DO - 10.7554/eLife.65634 UR - https://m2.mtmt.hu/api/publication/32186919 ID - 32186919 N1 - Funding Agency and Grant Number: Hungarian Science FoundationOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [GINOP 2.3.2-15-2016-00018]; NRDI OfficeNational Research, Development & Innovation Office (NRDIO) - Hungary [OTKA K128863]; Hungarian Academy of Sciences Janos Bolyai Research Scholarship; Innovation and Technology Fund New National Excellence Program; Eotvos Lorand Research Network ELKH-SZTE Research Group for Cortical Microcircuits Funding text: Eo tvos Lorand Research Network ELKH-SZTE Research Group for Cortical Microcircuits Ga ' bor Tama; Hungarian Science Foundation GINOP 2.3.2-15-2016-00018 Ga ' bor Tamas; NRDI Office OTKA K128863 Gabor Molnar Gabor Tama; Hungarian Academy of Sciences Janos Bolyai Research Scholarship Ga ' bor Molna; Innovation and Technology Fund New National Excellence Program Ga ' bor Molna ' r AB - Summation of ionotropic receptor-mediated responses is critical in neuronal computation by shaping input-output characteristics of neurons. However, arithmetics of summation for metabotropic signals are not known. We characterized the combined ionotropic and metabotropic output of neocortical neurogliaform cells (NGFCs) using electrophysiological and anatomical methods in the rat cerebral cortex. These experiments revealed that GABA receptors are activated outside release sites and confirmed coactivation of putative NGFCs in superficial cortical layers in vivo. Triple recordings from presynaptic NGFCs converging to a postsynaptic neuron revealed sublinear summation of ionotropic GABA(A) responses and linear summation of metabotropic GABA(B) responses. Based on a model combining properties of volume transmission and distributions of all NGFC axon terminals, we predict that in 83% of cases one or two NGFCs can provide input to a point in the neuropil. We suggest that interactions of metabotropic GABAergic responses remain linear even if most superficial layer interneurons specialized to recruit GABA(B) receptors are simultaneously active. LA - English DB - MTMT ER - TY - JOUR AU - Iacone, Yasmine AU - Morais, Tatiana P. AU - David, Francois AU - Delicata, Francis AU - Sandle, Joanna AU - Raffai, Tímea AU - Parri, Harri Rheinallt AU - Weisser, Johan Juhl AU - Bundgaard, Christoffer AU - Klewe, Ib Vestergaard AU - Tamás, Gábor AU - Thomsen, Morten Skott AU - Crunelli, Vincenzo AU - Lőrincz, László Magor TI - Systemic administration of ivabradine, a hyperpolarization-activated cyclic nucleotide-gated channel inhibitor, blocks spontaneous absence seizures JF - EPILEPSIA J2 - EPILEPSIA VL - 62 PY - 2021 IS - 7 SP - 1729 EP - 1743 PG - 15 SN - 0013-9580 DO - 10.1111/epi.16926 UR - https://m2.mtmt.hu/api/publication/32037613 ID - 32037613 N1 - Funding Agency and Grant Number: Wellcome TrustWellcome TrustEuropean Commission [91882]; Orszagos Tudomanyos Kutatasi AlapprogramokOrszagos Tudomanyos Kutatasi Alapprogramok (OTKA) [FK123831, NN125601]; Hungarian Brain Research Program [KTIA_NAP_13-2-2014-0014]; Ministry of Human Capacities, Hungary [20391-3/2018/FEKUSTRAT]; Marie Sklodowska-Curie Actions [H2020-MSCA-ITN-2016-722053]; Ester Floridia Neuroscience Research Foundation; Janos Bolyai FellowshipHungarian Academy of Sciences Funding text: Wellcome Trust, Grant/Award Number: 91882; Orszagos Tudomanyos Kutatasi Alapprogramok, Grant/Award Number: FK123831 and NN125601; Hungarian Brain Research Program, Grant/Award Number: KTIA_NAP_13-2-2014-0014; Ministry of Human Capacities, Hungary, Grant/Award Number: 20391-3/2018/FEKUSTRAT; Marie Sklodowska-Curie Actions, Grant/Award Number: H2020-MSCA-ITN-2016-722053; Ester Floridia Neuroscience Research Foundation; Magor L. Lorincz is a grantte of the Janos Bolyai Fellowship AB - Objective Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to be involved in the generation of absence seizures (ASs), and there is evidence that cortical and thalamic HCN channel dysfunctions may have a proabsence role. Many HCN channel blockers are available, but their role in ASs has been investigated only by localized brain injection or in in vitro model systems due to their limited brain availability. Here, we investigated the effect on ASs of orally administered ivabradine (an HCN channel blocker approved for the treatment of heart failure in humans) following injection of the P-glycoprotein inhibitor elacridar, which is known to increase penetration into the brain of drug substrates for this efflux transporter. The action of ivabradine was also tested following in vivo microinjection into the cortical initiation network (CIN) of the somatosensory cortex and in the thalamic ventrobasal nucleus (VB) as well as on cortical and thalamocortical neurons in brain slices. Methods We used electroencephalographic recordings in freely moving Genetic Absence Epilepsy Rats From Strasbourg (GAERSs) to assess the action of oral administration of ivabradine, with and without elacridar, on ASs. Ivabradine was also microinjected into the CIN and VB of GAERSs in vivo and applied to Wistar CIN and GAERS VB slices while recording patch-clamped cortical Layer 5/6 and thalamocortical neurons, respectively. Results Oral administration of ivabradine markedly and dose-dependently reduced ASs. Ivabradine injection into CIN abolished ASs and elicited small-amplitude 4-7-Hz waves (without spikes), whereas in the VB it was less potent. Moreover, ivabradine applied to GAERS VB and Wistar CIN slices selectively decreased HCN channel-dependent properties of cortical Layer 5/6 pyramidal and thalamocortical neurons, respectively. Significance These results provide the first demonstration of the antiabsence action of a systemically administered HCN channel blocker, indicating the potential of this class of drugs as a novel therapeutic avenue for ASs. LA - English DB - MTMT ER - TY - JOUR AU - Molnár, Benedek AU - Sere, Péter AU - Bordé, Sándor AU - Koós, Krisztián AU - Zsigri, Nikolett AU - Horváth, Péter AU - Lőrincz, László Magor TI - Cell-Type Specific Arousal-Dependent Modulation of Thalamic Activity in the Lateral Geniculate Nucleus JF - CEREBRAL CORTEX COMMUNICATIONS J2 - CEREB CORTEX COMMUN VL - 2 PY - 2021 PG - 9 SN - 2632-7376 DO - 10.1093/texcom/tgab020 UR - https://m2.mtmt.hu/api/publication/31953949 ID - 31953949 LA - English DB - MTMT ER - TY - JOUR AU - Yuste, Rafael AU - Hawrylycz, Michael AU - Aalling, Nadia AU - Aguilar-Valles, Argel AU - Arendt, Detlev AU - Arnedillo, Ruben Armananzas AU - Ascoli, Giorgio A. AU - Bielza, Concha AU - Bokharaie, Vahid AU - Bergmann, Tobias Borgtoft AU - Bystron, Irina AU - Capogna, Marco AU - Chang, Yoonjeung AU - Clemens, Ann AU - de, Kock Christiaan P. J. AU - DeFelipe, Javier AU - Dos, Santos Sandra Esmeralda AU - Dunville, Keagan AU - Feldmeyer, Dirk AU - Fiath, Richard AU - Fishell, Gordon James AU - Foggetti, Angelica AU - Gao, Xuefan AU - Ghaderi, Parviz AU - Goriounova, Natalia A. AU - Guentuerkuen, Onur AU - Hagihara, Kenta AU - Hall, Vanessa Jane AU - Helmstaedter, Moritz AU - Herculano, Suzana AU - Hilscher, Markus M. AU - Hirase, Hajime AU - Hjerling-Leffler, Jens AU - Hodge, Rebecca AU - Huang, Josh AU - Huda, Rafiq AU - Khodosevich, Konstantin AU - Kiehn, Ole AU - Koch, Henner AU - Kuebler, Eric S. AU - Kuhnemund, Malte AU - Larranaga, Pedro AU - Lelieveldt, Boudewijn AU - Louth, Emma Louise AU - Lui, Jan H. AU - Mansvelder, Huibert D. AU - Marin, Oscar AU - Martinez-Trujillo, Julio AU - Chameh, Homeira Moradi AU - Nath, Alok AU - Nedergaard, Maiken AU - Nemec, Pavel AU - Ofer, Netanel AU - Pfisterer, Ulrich Gottfried AU - Pontes, Samuel AU - Redmond, William AU - Rossier, Jean AU - Sanes, Joshua R. AU - Scheuermann, Richard AU - Serrano-Saiz, Esther AU - Steiger, Jochen F. AU - Somogyi, Peter AU - Tamás, Gábor AU - Tolias, Andreas Savas AU - Tosches, Maria Antonietta AU - Garcia, Miguel Turrero AU - Vieira, Hermany Munguba AU - Wozny, Christian AU - Wuttke, Thomas V. AU - Yong, Liu AU - Yuan, Juan AU - Zeng, Hongkui AU - Lein, Ed TI - A community-based transcriptomics classification and nomenclature of neocortical cell types (vol 23, pg 1456, 2020) JF - NATURE NEUROSCIENCE J2 - NAT NEUROSCI VL - 24 PY - 2021 IS - 4 SP - 613 EP - 613 PG - 1 SN - 1097-6256 DO - 10.1038/s41593-020-00768-3 UR - https://m2.mtmt.hu/api/publication/31889143 ID - 31889143 N1 - Funding Agency and Grant Number: NINDS NIH HHSUnited States Department of Health & Human ServicesNational Institutes of Health (NIH) - USANIH National Institute of Neurological Disorders & Stroke (NINDS) [R01 NS039600] Funding Source: Medline LA - English DB - MTMT ER -