TY - JOUR AU - Haas, János AU - Budai, Tamás AU - Németh, Norbert AU - Czuppon, György AU - Hips, Kinga AU - Piros, Olga AU - Czébely, Andrea AU - Rinyu, László AU - Győri, Orsolya TI - Early-diagenetic dolomitization of Middle Triassic platform/ramp carbonates driven by geothermal convection in the Bükk Mts. (North Hungary) JF - GEOLOGICA CARPATHICA J2 - GEOL CARPATH VL - 75 PY - 2024 IS - 2 SP - 1 EP - 17 PG - 17 SN - 1335-0552 DO - 10.31577/GeolCarp.2024.05 UR - https://m2.mtmt.hu/api/publication/34895404 ID - 34895404 LA - English DB - MTMT ER - TY - JOUR AU - Dainotti, M.G. AU - Lenart, A.Ł. AU - Yengejeh, Mina Ghodsi AU - Chakraborty, S. AU - Fraija, N. AU - Di Valentino, E. AU - Montani, G. TI - A new binning method to choose a standard set of Quasars JF - PHYSICS OF THE DARK UNIVERSE J2 - PHYS DARK UNIVERSE VL - 44 PY - 2024 SN - 2212-6864 DO - 10.1016/j.dark.2024.101428 UR - https://m2.mtmt.hu/api/publication/34890909 ID - 34890909 LA - English DB - MTMT ER - TY - JOUR AU - Kulmány, István Mihály AU - Bede, L AU - Stencinger, D AU - Zsebő, S AU - Csavajda, P AU - Kalocsai, Renátó AU - Vona, Márton AU - Jakab, Gergely Imre AU - Vona, Viktória AU - Bede-Fazekas, Ákos TI - Challenges in mapping soil variability using apparent soil electrical conductivity under heterogeneous topographic conditions JF - AGRONOMY (BASEL) J2 - AGRONOMY-BASEL VL - 14 PY - 2024 IS - 6 SN - 2073-4395 DO - 10.3390/agronomy14061161 UR - https://m2.mtmt.hu/api/publication/34886479 ID - 34886479 LA - English DB - MTMT ER - TY - JOUR AU - Battino, Umberto AU - Roberti, Lorenzo AU - Lawson, Thomas V. AU - Laird, Alison M. AU - Todd, Lewis TI - Impact of Newly Measured Nuclear Reaction Rates on 26Al Ejected Yields from Massive Stars JF - UNIVERSE J2 - UNIVERSE-BASEL VL - 10 PY - 2024 IS - 5 SP - 204 SN - 2218-1997 DO - 10.3390/universe10050204 UR - https://m2.mtmt.hu/api/publication/34883224 ID - 34883224 AB - Over the last three years, the rates of all the main nuclear reactions involving the destruction and production of 26Al in stars (26Al(n, p)26Mg, 26Al(n, α)23Na, 26Al(p, γ)27Si and 25Mg(p, γ)26Al) have been re-evaluated thanks to new high-precision experimental measurements of their crosssections at energies of astrophysical interest, considerably reducing the uncertainties in the nuclear physics affecting their nucleosynthesis. We computed the nucleosynthetic yields ejected by the explosion of a high-mass star (20 M⊙, Z = 0.0134) using the FRANEC stellar code, considering two explosion energies, 1.2 × 1051 erg and 3 × 1051 erg. We quantify the change in the ejected amount of 26Al and other key species that is predicted when the new rate selection is adopted instead of the reaction rates from the STARLIB nuclear library. Additionally, the ratio of our ejected yields of 26Al to those of 14 other short-lived radionuclides (36Cl, 41Ca, 53Mn, 60Fe, 92Nb, 97Tc, 98Tc, 107Pd, 126Sn, 129I, 36Cs, 146Sm, 182Hf, 205Pb) are compared to early solar system isotopic ratios, inferred from meteorite measurements. The total ejected 26Al yields vary by a factor of ~3 when adopting the new rates or the STARLIB rates. Additionally, the new nuclear reaction rates also impact the predicted abundances of short-lived radionuclides in the early solar system relative to 26Al. However, it is not possible to reproduce all the short-lived radionuclide isotopic ratios with our massive star model alone, unless a second stellar source could be invoked, which must have been active in polluting the pristine solar nebula at a similar time of a core-collapse supernova. LA - English DB - MTMT ER - TY - JOUR AU - Sódorné Bognár, Zsófia AU - Sódor, Ádám TI - Rotation of ZZ Ceti stars as seen by TESS JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 684 PY - 2024 SN - 0004-6361 DO - 10.1051/0004-6361/202348759 UR - https://m2.mtmt.hu/api/publication/34883223 ID - 34883223 AB - Context. Knowing the rotation rates and masses of white dwarf stars is an important step towards characterising the angular momentum transport mechanism in their progenitors, and coupling the cores of red giants to their envelopes. However, deriving these rotation rates is not an easy task. One can use the rotational broadening of spectral lines, but there is another way to gather reliable information on the stellar rotation periods of pulsators: through studying the splitting effect of rotation on oscillation frequencies. Aims: We aim to derive stellar rotation periods in the TESS sample for as many white dwarf pulsators as possible. Methods: We rely on light-curve analysis of the TESS observations, and search for closely spaced frequency multiplets that could be rotationally split pulsation modes. We work with triplet frequencies, even if one or two triplet components are only marginally detectable. We also utilise ground-based observations available from the literature in an attempt to confirm the presence of several triplets. Results: We successfully identified rotationally split multiplets and derived rotation rates for 14 stars. The fastest rotators we identified have rotation periods of 6.6-10.0 h. The majority of the pulsators rotate with periods of 11.9-47.5 h, while we derived 85.5 and 93.2 h periods for the slowest rotators. In addition to providing stellar mass estimations, our results confirm previous findings that larger-mass WDs rotate faster than their lower-mass counterparts. We determine the rotation periods of four stars for the first time. LA - English DB - MTMT ER - TY - JOUR AU - Deka, Mami AU - Bellinger, Earl P. AU - Kanbur, Shashi M. AU - Deb, Sukanta AU - Bhardwaj, Anupam AU - Randall, Hugh Riley AU - Kalici, Selim AU - Das, Susmita TI - Bridging theory and observations in stellar pulsations: the impact of convection and metallicity on the instability strips of classical and type-II cepheids JF - MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY J2 - MON NOT R ASTRON SOC VL - 530 PY - 2024 IS - 4 SP - 5099 EP - 5119 PG - 21 SN - 0035-8711 DO - 10.1093/mnras/stae1136 UR - https://m2.mtmt.hu/api/publication/34883222 ID - 34883222 AB - The effect of metallicity on the theoretical and empirical period-luminosity relations of Cepheid variables is not well understood and remains a highly debated issue. Here, we examine empirical colour-magnitude diagrams (CMDs) of Classical and Type-II Cepheids in the Magellanic Clouds and compare those with the theoretically predicted instability strip (IS) edges. We explore the effects of incorporating turbulent flux, turbulent pressure, and radiative cooling into the convection theory on the predicted IS at various metallicities using MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS - RADIAL STELLAR PULSATIONS. We find that the edges become redder with the increasing complexity of convection physics incorporated in the fiducial convection sets, and are similarly shifted to the red with increasing metallicity. The inclusion of turbulent flux and pressure improves the agreement of the red edge of the IS, while their exclusion leads to better agreement with observations of the blue edge. About 90 per cent of observed stars are found to fall within the predicted bluest and reddest edges across the considered variations of turbulent convection parameters. Furthermore, we identify and discuss discrepancies between theoretical and observed CMDs in the low-effective temperature and high-luminosity regions for stars with periods greater than ~20 d. These findings highlight the potential for calibrating the turbulent convection parameters in stellar pulsation models or the prediction of a new class of rare, long-period, 'red Cepheids', thereby improving our understanding of Cepheids and their role in cosmological studies. LA - English DB - MTMT ER - TY - CONF AU - Deka, Mami AU - Bellinger, Earl P. AU - Kanbur, Shashi M. AU - Deb, Sukanta AU - Bhardwaj, Anupam AU - Randall, Hugh Riley AU - Kalici, Selim AU - Das, Susmita TI - The impact of convection and metallicity on instability strip boundaries of Classical Cepheids T2 - 42nd meeting of the Astronomical Society of India (ASI PY - 2024 UR - https://m2.mtmt.hu/api/publication/34883220 ID - 34883220 AB - Classical Cepheid, one type of pulsating variable is vital for measuring cosmic distances thanks to their period-luminosity (PL) relation and contributes to the ongoing debate surrounding the "Hubble constant". The instability strip (IS) is the home to the classically pulsating stars such as Classical Cepheids, Type II Cepheids, RR-Lyraes, δ-Scuti stars. The slope and intercept of PL relation are strongly coupled with the slope and intercept of IS edges (Simon & Young, 1997). A steeper/shallower instability region implies a steeper/shallower PL relation for a certain stellar population. Analysis of IS will provide us with new insights into the properties of Cepheids and thereby contribute to improving the PL relation. However, the internal structure of the IS is still unclear. What is the exact physical condition that determines the required depth of the He II region that makes these stars variable while entering the IS through the blue/hot edge? What is the other physical mechanism that is making these stars again steady while leaving the IS through the red/cool edge? How these physical processes are influenced by metallicity, temperature, mass, etc.? I intend to present our recent findings on this topic, both from observational and theoretical perspectives. LA - English DB - MTMT ER - TY - JOUR AU - Gaia, Collaboration AU - Krone-Martins, A. AU - Ducourant, C. AU - Galluccio, L. AU - Delchambre, L. AU - Oreshina-Slezak, I. AU - Teixeira, R. AU - Braine, J. AU - Le, Campion J. -F. AU - Mignard, F. AU - Roux, W. AU - Blazere, A. AU - Pegoraro, L. AU - Brown, A. G. A. AU - Vallenari, A. AU - Prusti, T. AU - de, Bruijne J. H. J. AU - Arenou, F. AU - Babusiaux, C. AU - Barbier, A. AU - Biermann, M. AU - Creevey, O. L. AU - Evans, D. W. AU - Eyer, L. AU - Guerra, R. AU - Hutton, A. AU - Jordi, C. AU - Klioner, S. A. AU - Lammers, U. AU - Lindegren, L. AU - Luri, X. AU - Randich, S. AU - Sartoretti, P. AU - Smiljanic, R. AU - Tanga, P. AU - Walton, N. A. AU - Bailer-Jones, C. A. L. AU - Bastian, U. AU - Cropper, M. AU - Drimmel, R. AU - Katz, D. AU - Soubiran, C. AU - van, Leeuwen F. AU - Audard, M. AU - Bakker, J. AU - Blomme, R. AU - Castañeda, J. AU - De, Angeli F. AU - Fabricius, C. AU - Fouesneau, M. AU - Frémat, Y. AU - Guerrier, A. AU - Masana, E. AU - Messineo, R. AU - Nicolas, C. AU - Nienartowicz, K. AU - Pailler, F. AU - Panuzzo, P. AU - Riclet, F. AU - Seabroke, G. M. AU - Sordo, R. AU - Thévenin, F. AU - Gracia-Abril, G. AU - Portell, J. AU - Teyssier, D. AU - Altmann, M. AU - Benson, K. AU - Berthier, J. AU - Burgess, P. W. AU - Busonero, D. AU - Busso, G. AU - Cánovas, H. AU - Carry, B. AU - Cheek, N. AU - Clementini, G. AU - Damerdji, Y. AU - Davidson, M. AU - de, Teodoro P. AU - Dell'Oro, A. AU - Fraile, Garcia E. AU - Garabato, D. AU - García-Lario, P. AU - Garralda, Torres N. AU - Gavras, P. AU - Haigron, R. AU - Hambly, N. C. AU - Harrison, D. L. AU - Hatzidimitriou, D. AU - Hernández, J. AU - Hodgkin, S. T. AU - Holl, B. AU - Jamal, S. AU - Jordan, S. AU - Lanzafame, A. C. AU - Löffler, W. AU - Lorca, A. AU - Marchal, O. AU - Marrese, P. M. AU - Moitinho, A. AU - Muinonen, K. AU - Nuñez, Campos M. AU - Osborne, P. AU - Pancino, E. AU - Pauwels, T. AU - Recio-Blanco, A. AU - Riello, M. AU - Rimoldini, L. AU - Robin, A. C. AU - Roegiers, T. AU - Sarro, L. M. AU - Schultheis, M. AU - Siopis, C. AU - Smith, M. AU - Sozzetti, A. AU - Utrilla, E. AU - van, Leeuwen M. AU - Weingrill, K. AU - Abbas, U. AU - Ábrahám, Péter AU - Abreu, Aramburu A. AU - Aerts, C. AU - Altavilla, G. AU - Álvarez, M. A. AU - Alves, J. AU - Anderson, R. I. AU - Antoja, T. AU - Baines, D. AU - Baker, S. G. AU - Balog, Z. AU - Barache, C. AU - Barbato, D. AU - Barros, M. AU - Barstow, M. A. AU - Bartolomé, S. AU - Bashi, D. AU - Bauchet, N. AU - Baudeau, N. AU - Becciani, U. AU - Bedin, L. R. AU - Bellas-Velidis, I. AU - Bellazzini, M. AU - Beordo, W. AU - Berihuete, A. AU - Bernet, M. AU - Bertolotto, C. AU - Bertone, S. AU - Bianchi, L. AU - Binnenfeld, A. AU - Boch, T. AU - Bombrun, A. AU - Bouquillon, S. AU - Bragaglia, A. AU - Bramante, L. AU - Breedt, E. AU - Bressan, A. AU - Brouillet, N. AU - Brugaletta, E. AU - Bucciarelli, B. AU - Butkevich, A. G. AU - Buzzi, R. AU - Caffau, E. AU - Cancelliere, R. AU - Cannizzo, S. AU - Carballo, R. AU - Carlucci, T. AU - Carnerero, M. I. AU - Carrasco, J. M. AU - Carretero, J. AU - Carton, S. AU - Casamiquela, L. AU - Castellani, M. AU - Castro-Ginard, A. AU - Cesare, V. AU - Charlot, P. AU - Chemin, L. AU - Chiaramida, V. AU - Chiavassa, A. AU - Chornay, N. AU - Collins, R. AU - Contursi, G. AU - Cooper, W. J. AU - Cornez, T. AU - Crosta, M. AU - Crowley, C. AU - Dafonte, C. AU - de, Laverny P. AU - De, Luise F. AU - De, March R. AU - de, Souza R. AU - de, Torres A. AU - del, Peloso E. F. AU - Delbo, M. AU - Delgado, A. AU - Dharmawardena, T. E. AU - Diakite, S. AU - Diener, C. AU - Distefano, E. AU - Dolding, C. AU - Dsilva, K. AU - Durán, J. AU - Enke, H. AU - Esquej, P. AU - Fabre, C. AU - Fabrizio, M. AU - Faigler, S. AU - Fatović, M. AU - Fedorets, G. AU - Fernández-Hernández, J. AU - Fernique, P. AU - Figueras, F. AU - Fournier, Y. AU - Fouron, C. AU - Gai, M. AU - Galinier, M. AU - Garcia-Gutierrez, A. AU - García-Torres, M. AU - Garofalo, A. AU - Gerlach, E. AU - Geyer, R. AU - Giacobbe, P. AU - Gilmore, G. AU - Girona, S. AU - Giuffrida, G. AU - Gomel, R. AU - Gomez, A. AU - González-Núñez, J. AU - González-Santamaría, I. AU - Gosset, E. AU - Granvik, M. AU - Gregori, Barrera V. AU - Gutiérrez-Sánchez, R. AU - Haywood, M. AU - Helmer, A. AU - Helmi, A. AU - Henares, K. AU - Hidalgo, S. L. AU - Hilger, T. AU - Hobbs, D. AU - Hottier, C. AU - Huckle, H. E. AU - Jabłońska, M. AU - Jansen, F. AU - Jiménez-Arranz, Ó. AU - Juaristi, Campillo J. AU - Khanna, S. AU - Kordopatis, G. AU - Kóspál, Ágnes AU - Kostrzewa-Rutkowska, Z. AU - Kun, Mária AU - Lambert, S. AU - Lanza, A. F. AU - Lebreton, Y. AU - Lebzelter, T. AU - Leccia, S. AU - Lecoeur-Taibi, I. AU - Lecoutre, G. AU - Liao, S. AU - Liberato, L. AU - Licata, E. AU - Lindstrøm, H. E. P. AU - Lister, T. A. AU - Livanou, E. AU - Lobel, A. AU - Loup, C. AU - Mahy, L. AU - Mann, R. G. AU - Manteiga, M. AU - Marchant, J. M. AU - Marconi, M. AU - Marín, Pina D. AU - Marinoni, S. AU - Marshall, D. J. AU - Martín, Lozano J. AU - Martín-Fleitas, J. M. AU - Marton, Gábor AU - Mary, N. AU - Masip, A. AU - Massari, D. AU - Mastrobuono-Battisti, A. AU - Mazeh, T. AU - McMillan, P. J. AU - Meichsner, J. AU - Messina, S. AU - Michalik, D. AU - Millar, N. R. AU - Mints, A. AU - Molina, D. AU - Molinaro, R. AU - Molnár, László AU - Monari, G. AU - Monguió, M. AU - Montegriffo, P. AU - Montero, A. AU - Mor, R. AU - Mora, A. AU - Morbidelli, R. AU - Morel, T. AU - Morris, D. AU - Mowlavi, N. AU - Munoz, D. AU - Muraveva, T. AU - Murphy, C. P. AU - Musella, I. AU - Nagy, Zsófia AU - Nieto, S. AU - Noval, L. AU - Ogden, A. AU - Ordenovic, C. AU - Pagani, C. AU - Pagano, I. AU - Palaversa, L. AU - Palicio, P. A. AU - Pallas-Quintela, L. AU - Panahi, A. AU - Panem, C. AU - Payne-Wardenaar, S. AU - Penttilä, A. AU - Pesciullesi, P. AU - Piersimoni, A. M. AU - Pinamonti, M. AU - Pineau, F. -X. AU - Plachy, Emese AU - Plum, G. AU - Poggio, E. AU - Pourbaix, D. AU - Prša, A. AU - Pulone, L. AU - Racero, E. AU - Rainer, M. AU - Raiteri, C. M. AU - Ramos, P. AU - Ramos-Lerate, M. AU - Ratajczak, M. AU - Re, Fiorentin P. AU - Regibo, S. AU - Reylé, C. AU - Ripepi, V. AU - Riva, A. AU - Rix, H. -W. AU - Rixon, G. AU - Robichon, N. AU - Robin, C. AU - Romero-Gómez, M. AU - Rowell, N. AU - Royer, F. AU - Ruz, Mieres D. AU - Rybicki, K. A. AU - Sadowski, G. AU - Sáez, Núñez A. AU - Sagristà, Sellés A. AU - Sahlmann, J. AU - Sanchez, Gimenez V. AU - Sanna, N. AU - Santoveña, R. AU - Sarasso, M. AU - Sarrate, Riera C. AU - Sciacca, E. AU - Segovia, J. C. AU - Ségransan, D. AU - Shahaf, S. AU - Siebert, A. AU - Siltala, L. AU - Slezak, E. AU - Smart, R. L. AU - Snaith, O. N. AU - Solano, E. AU - Solitro, F. AU - Souami, D. AU - Souchay, J. AU - Spina, L. AU - Spitoni, E. AU - Spoto, F. AU - Squillante, L. A. AU - Steele, I. A. AU - Steidelmüller, H. AU - Surdej, J. AU - Szabados, László AU - Taris, F. AU - Taylor, M. B. AU - Tisanić, K. AU - Tolomei, L. AU - Torra, F. AU - Torralba, Elipe G. AU - Trabucchi, M. AU - Tsantaki, M. AU - Ulla, A. AU - Unger, N. AU - Vanel, O. AU - Vecchiato, A. AU - Vicente, D. AU - Voutsinas, S. AU - Weiler, M. AU - Wyrzykowski, Ł. AU - Zhao, H. AU - Zorec, J. AU - Zwitter, T. AU - Balaguer-Núñez, L. AU - Leclerc, N. AU - Morgenthaler, S. AU - Robert, G. AU - Zucker, S. TI - Gaia Focused Product Release: A catalogue of sources around quasars to search for strongly lensed quasars JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 685 PY - 2024 SN - 0004-6361 DO - 10.1051/0004-6361/202347273 UR - https://m2.mtmt.hu/api/publication/34883214 ID - 34883214 AB - Context. Strongly lensed quasars are fundamental sources for cosmology. The Gaia space mission covers the entire sky with the unprecedented resolution of 0.18″ in the optical, making it an ideal instrument to search for gravitational lenses down to the limiting magnitude of 21. Nevertheless, the previous Gaia Data Releases are known to be incomplete for small angular separations such as those expected for most lenses. Aims: We present the Data Processing and Analysis Consortium GravLens pipeline, which was built to analyse all Gaia detections around quasars and to cluster them into sources, thus producing a catalogue of secondary sources around each quasar. We analysed the resulting catalogue to produce scores that indicate source configurations that are compatible with strongly lensed quasars. Methods: GravLens uses the DBSCAN unsupervised clustering algorithm to detect sources around quasars. The resulting catalogue of multiplets is then analysed with several methods to identify potential gravitational lenses. We developed and applied an outlier scoring method, a comparison between the average BP and RP spectra of the components, and we also used an extremely randomised tree algorithm. These methods produce scores to identify the most probable configurations and to establish a list of lens candidates. Results: We analysed the environment of 3 760 032 quasars. A total of 4 760 920 sources, including the quasars, were found within 6″ of the quasar positions. This list is given in the Gaia archive. In 87% of cases, the quasar remains a single source, and in 501 385 cases neighbouring sources were detected. We propose a list of 381 lensed candidates, of which we identified 49 as the most promising ones. Beyond these candidates, the associate tables in this Focused Product Release allow the entire community to explore the unique Gaia data for strong lensing studies further. Full Tables 2 and 3 are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/685/A130 LA - English DB - MTMT ER - TY - JOUR AU - Ishchenko, Maryna AU - Berczik, Péter AU - Sobolenko, Margarita TI - Milky Way globular clusters on cosmological timescales. IV. Guests in the outer Solar System JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 683 PY - 2024 SN - 0004-6361 DO - 10.1051/0004-6361/202347990 UR - https://m2.mtmt.hu/api/publication/34883212 ID - 34883212 AB - Context. The present epoch of the Gaia success gives us a possibility to predict the dynamical evolution of our Solar System in the global Galactic framework with high precision. Aims: We statistically investigated the total interaction of globular clusters with the Solar System during six billion years of look-back time. We estimated the gravitational influence of globular clusters' flyby onto the Oort cloud system. Methods: To perform the realistic orbital dynamical evolution for each individual cluster, we used our own high-order parallel dynamical N-body φ-GPU code that we developed. To reconstruct the orbital trajectories of clusters, we used five external dynamical time variable galactic potentials selected from the IllustrisTNG-100 cosmological database and one static potential. To detect a cluster's close passages near the Solar System, we adopted a simple distance criteria of below 200 pc. To take into account a cluster's measurement errors (based on Gaia DR3), we generated 1000 initial positions and velocity randomisations for each cluster in each potential. Results: We found 35 globular clusters that have had close passages near the Sun in all the six potentials during the whole lifetime of the Solar System. We can conclude that at a relative distance of 50 pc between a GC and the SolS, we obtain on average ∼15% of the close passage probability over all six billion years, and at dR = 100 pc, we get on average ∼35% of the close passage probability over all six billion years. The globular clusters BH 140, UKS 1, and Djorg 1 have a mean minimum relative distance to the Sun of 9, 19, and 17 pc, respectively. We analysed the gravitational energetic influence on the whole Oort cloud system from the closest selected globular cluster flyby. We generally found that a globular cluster with a typical mass above a few times 105 M⊙ and with deep close passages in a 1-2 pc immediately results in the ejection more than ∼30% of particles from the Oort cloud system. Conclusions: We can assume that a globular cluster with close passages near the Sun is not a frequent occurrence but also not an exceptional event in the Solar System's lifetime. LA - English DB - MTMT ER - TY - JOUR AU - Lau, Tommy Chi Ho AU - Lee, Man Hoi AU - Brasser, Ramon AU - Matsumura, Soko TI - Can the giant planets of the Solar System form via pebble accretion in a smooth protoplanetary disc? JF - ASTRONOMY & ASTROPHYSICS J2 - ASTRON ASTROPHYS VL - 683 PY - 2024 SN - 0004-6361 DO - 10.1051/0004-6361/202347863 UR - https://m2.mtmt.hu/api/publication/34883210 ID - 34883210 AB - Context. Prevailing N-body planet formation models typically start with lunar-mass embryos and show a general trend of rapid migration of massive planetary cores to the inner Solar System in the absence of a migration trap. This setup cannot capture the evolution from a planetesimal to embryo, which is crucial to the final architecture of the system. Aims: We aim to model planet formation with planet migration starting with planetesimals of ~10−6−10−4 M⊕ and reproduce the giant planets of the Solar System. Methods: We simulated a population of 1000-5000 planetesimals in a smooth protoplanetary disc, which was evolved under the effects of their mutual gravity, pebble accretion, gas accretion, and planet migration, employing the parallelized N-body code SyMBAp. Results: We find that the dynamical interactions among growing planetesimals are vigorous and can halt pebble accretion for excited bodies. While a set of results without planet migration produces one to two gas giants and one to two ice giants beyond 6 au, massive planetary cores readily move to the inner Solar System once planet migration is in effect. Conclusions: Dynamical heating is important in a planetesimal disc and the reduced pebble encounter time should be considered in similar models. Planet migration remains a challenge to form cold giant planets in a smooth protoplanetary disc, which suggests an alternative mechanism is required to stop them at wide orbits. LA - English DB - MTMT ER -