TY - JOUR AU - Pető, János AU - Dobrik, Gergely AU - Kukucska, Gergő AU - Vancsó, Péter AU - Koós, Antal Adolf AU - Koltai, János AU - Nemes Incze, Péter AU - Hwang, Chanyong AU - Tapasztó, Levente TI - Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers JF - NPJ 2D MATERIALS AND APPLICATIONS J2 - NPJ 2D MATER APPL VL - 3 PY - 2019 IS - 1 SN - 2397-7132 DO - 10.1038/s41699-019-0123-5 UR - https://m2.mtmt.hu/api/publication/30864570 ID - 30864570 LA - English DB - MTMT ER - TY - JOUR AU - Vancsó, Péter AU - Popov, Z.I. AU - Pető, János AU - Ollár, Tamás AU - Dobrik, Gergely AU - Pap, József Sándor AU - Hwang, C. AU - Sorokin, P.B. AU - Tapasztó, Levente TI - Transition metal chalcogenide single layers as an active platform for single-atom catalysis JF - ACS ENERGY LETTERS J2 - ACS ENERGY LETT VL - 4 PY - 2019 IS - 8 SP - 1947 EP - 1953 PG - 7 SN - 2380-8195 DO - 10.1021/acsenergylett.9b01097 UR - https://m2.mtmt.hu/api/publication/30774658 ID - 30774658 LA - English DB - MTMT ER - TY - JOUR AU - Pető, János AU - Ollár, Tamás AU - Vancsó, Péter AU - Popov, Z.I. AU - Magda, Gábor Zsolt AU - Dobrik, Gergely AU - Hwang, C. AU - Sorokin, P.B. AU - Tapasztó, Levente TI - Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions JF - NATURE CHEMISTRY J2 - NAT CHEM VL - 10 PY - 2018 IS - 12 SP - 1246 EP - 1251 PG - 6 SN - 1755-4330 DO - 10.1038/s41557-018-0136-2 UR - https://m2.mtmt.hu/api/publication/30331608 ID - 30331608 LA - English DB - MTMT ER - TY - JOUR AU - Fülöp, Bálint AU - Tajkov, Zoltán AU - Pető, János AU - Kun, Péter AU - Koltai, János AU - Oroszlány, László AU - Tóvári, Endre AU - Murakawa, H AU - Tokura, Y AU - Bordács, Sándor AU - Tapasztó, Levente AU - Csonka, Szabolcs TI - Exfoliation of single layer BiTeI flakes JF - 2D MATERIALS J2 - 2D MATER VL - 5 ET - 0 PY - 2018 IS - 3 PG - 9 SN - 2053-1583 DO - 10.1088/2053-1583/aac652 UR - https://m2.mtmt.hu/api/publication/3390771 ID - 3390771 N1 - Department of Physics, Budapest University of Technology and Economics, Budafoki út 8, Budapest, 1111, Hungary MTA-BME Condensed Matter Research Group, Budafoki út 8, Budapest, 1111, Hungary Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary Centre for Energy Research, Institute of Technical Physics and Materials Science, 2D Nanoelectronics Lendület Research Group, Budapest, Hungary Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary MTA-BME Lendület Nanoelectronics Research Group, Budafoki út 8, Budapest, 1111, Hungary Department of Physics, Osaka University, Toyonaka, 560-0043, Japan Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan AB - Spin orbit interaction is strongly enhanced in structures where a heavy element is embedded in an inversion asymmetric crystal field. A simple way for realizing such a setup is to take a single atomic layer of a heavy element and encapsulate it between two atomic layers of different elemental composition. BiTeI is a promising candidate for such a 2D crystal. In its bulk form BiTeI consists of loosely coupled three atom thick layers where a layer of high atomic number Bi are sandwiched between Te and I sheets. Despite considerable recent attention to bulk BiTeI due to its giant Rashba spin splitting, the isolation of a single layer remained elusive. In this work we report the first successful isolation and characterization of a single layer of BiTeI using a novel exfoliation technique on stripped gold. Our scanning probe studies and first principles calculations show that the fabricated 100 mu m sized BiTeI flakes are stable at ambient conditions. Giant Rashba splitting and spin-momentum locking of this new 2D crystal opens the way towards novel spintronic applications and synthetic topological heterostructures. LA - English DB - MTMT ER - TY - JOUR AU - Vancsó, Péter AU - Magda, Gábor Zsolt AU - Pető, János AU - Noh, JY AU - Kim, YS AU - Hwang, C AU - Biró, László Péter AU - Tapasztó, Levente TI - The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy JF - SCIENTIFIC REPORTS J2 - SCI REP VL - 6 PY - 2016 PG - 7 SN - 2045-2322 DO - 10.1038/srep29726 UR - https://m2.mtmt.hu/api/publication/3122457 ID - 3122457 AB - MoS2 single layers have recently emerged as strong competitors of graphene in electronic and optoelectronic device applications due to their intrinsic direct bandgap. However, transport measurements reveal the crucial role of defect-induced electronic states, pointing out the fundamental importance of characterizing their intrinsic defect structure. Transmission Electron Microscopy (TEM) is able to image atomic scale defects in MoS2 single layers, but the imaged defect structure is far from the one probed in the electronic devices, as the defect density and distribution are substantially altered during the TEM imaging. Here, we report that under special imaging conditions, STM measurements can fully resolve the native atomic scale defect structure of MoS2 single layers. Our STM investigations clearly resolve a high intrinsic concentration of individual sulfur atom vacancies, and experimentally identify the nature of the defect induced electronic mid-gap states, by combining topographic STM images with ab intio calculations. Experimental data on the intrinsic defect structure and the associated defect-bound electronic states that can be directly used for the interpretation of transport measurements are essential to fully understand the operation, reliability and performance limitations of realistic electronic devices based on MoS2 single layers. LA - English DB - MTMT ER - TY - JOUR AU - Magda, Gábor Zsolt AU - Pető, János AU - Dobrik, Gergely AU - Hwang, C AU - Biró, László Péter AU - Tapasztó, Levente TI - Exfoliation of large-area transition metal chalcogenide single layers JF - SCIENTIFIC REPORTS J2 - SCI REP VL - 5 PY - 2015 PG - 5 SN - 2045-2322 DO - 10.1038/srep14714 UR - https://m2.mtmt.hu/api/publication/2984284 ID - 2984284 AB - Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically <10 um) lateral size of the produced single layers. Here, we report a novel mechanical exfoliation technique, based on chemically enhanced adhesion, yielding MoS2single layers with typical lateral sizes of several hundreds of microns. The idea is to exploit the chemical affinity of the sulfur atoms that can bind more strongly to a gold surface than the neighboring layers of the bulk MoS2 crystal. Moreover, we found that our exfoliation process is not specific to MoS2, but can be generally applied for various layered chalcogenides including selenites and tellurides, providing an easy access to large-area 2D crystals for the whole class of layered transition metal chalcogenides. LA - English DB - MTMT ER -