1.
NATURE MICROBIOLOGY 3 : 6 pp. 718-731. , 14 p. (2018)
Közlemény:3378998 Egyeztetett Forrás Idéző Folyóiratcikk (Szakcikk ) Nyilvános idézők összesen: 79 Független: 72 Függő: 7 Idézett közlemények száma: 9
Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos[3378998] [Érvényesített]
Független idéző: 72, Függő idéző: 7, Nem vizsgált idéző: 0, Összes idéző: 79
  1. Panteleev Pavel V. et al. Combined Antibacterial Effects of Goat Cathelicidins With Different Mechanisms of Action. (2018) FRONTIERS IN MICROBIOLOGY 1664-302X 9
  2. Von Borowski Rafael Gomes et al. Promising Antibiofilm Activity of Peptidomimetics. (2018) FRONTIERS IN MICROBIOLOGY 1664-302X 9
  3. * Talpin A. et al. A20 in dendritic cells restrains intestinal antibacterial peptide expression and preserves commensal homeostasis. (2019) PLOS ONE 1932-6203 14 7
  4. Wang Yan et al. A novel heterologous expression strategy for the quorum-quenching enzyme MomL in Lysobacter enzymogenes to the inhibit pathogenicity of Pectobacterium. (2019) APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 0175-7598 1432-0614 IN PRESS p. IN PRESS
  5. Liu Y. et al. Antagonizing Vancomycin Resistance in Enterococcus by Surface Localized Antimicrobial Display-Derived Peptides. (2019) ACS INFECTIOUS DISEASES 2373-8227
  6. Meng Q. et al. Antibacterial Coatings of Biomedical Surfaces by Polydextran Aldehyde/Polyethylenimine Nanofibers. (2019) ACS APPLIED BIO MATERIALS 2576-6422 2 1 562-569
  7. Peng Jian et al. Antibacterial mechanism of peptide Cec4 against Acinetobacter baumannii. (2019) INFECTION AND DRUG RESISTANCE 1178-6973 12 2417-2428
  8. Agbale Caleb M. et al. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. (2019) BIOCHEMISTRY 0006-2960 1520-4995 58 36 3802-3812
  9. Peng J. et al. Antimicrobial functional divergence of the cecropin antibacterial peptide gene family in Musca domestica. (2019) PARASITES AND VECTORS 1756-3305 12 1
  10. Santos R. et al. Are antimicrobial peptides the answer for diabetic foot infection management?. (2019) Megjelent: Diabetic Foot: Prevention and Treatment pp. 51-79
  11. Dragulska Sylwia A. et al. A Tripeptide-Stabilized Nanoemulsion of Oleic Acid. (2019) JOVE-JOURNAL OF VISUALIZED EXPERIMENTS 1940-087X 144
  12. Cândido E.D.S. et al. Bacterial cross-resistance to anti-infective compounds. Is it a real problem?. (2019) CURRENT OPINION IN PHARMACOLOGY 1471-4892 48 76-81
  13. * Kintses B. et al. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. (2019) NATURE COMMUNICATIONS 2041-1723 10 1
  14. Qu Junyan et al. Crisis of Antimicrobial Resistance in China: Now and the Future. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  15. Vishnepolsky Boris et al. De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. (2019) PHARMACEUTICALS 1424-8247 12 2
  16. Al Tall Y. et al. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. (2019) INFECTION AND DRUG RESISTANCE 1178-6973 12 1035-1045
  17. Lu X. et al. Designing Melittin-Graphene Hybrid Complexes for Enhanced Antibacterial Activity. (2019) ADVANCED HEALTHCARE MATERIALS 2192-2640 2192-2659 8 9
  18. * Bocsik Alexandra et al. Dual Action of the PN159/KLAL/MAP Peptide: Increase of Drug Penetration across Caco-2 Intestinal Barrier Model by Modulation of Tight Junctions and Plasma Membrane Permeability.. (2019) PHARMACEUTICS 1999-4923 11 2
  19. Kepiro I.E. et al. Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. (2019) ACS NANO 1936-0851 1936-086X
  20. Zheng Y. et al. Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10 APR
  21. Singh R. et al. Gold-Ions-Mediated Diproline Peptide Nanocarpets and Their Inhibition of Bacterial Growth. (2019) CHEMISTRYSELECT 2365-6549 4 19 5810-5816
  22. Hong J. et al. How melittin inserts into cell membrane: Conformational changes, inter-peptide cooperation, and disturbance on the membrane. (2019) MOLECULES 1420-3049 24 9
  23. Lu L. et al. Human antimicrobial RNases inhibit intracellular bacterial growth and induce autophagy in mycobacteria-infected macrophages. (2019) FRONTIERS IN IMMUNOLOGY 1664-3224 10 JUL
  24. Shruti S. R. et al. Identification of therapeutic peptide scaffold from tritrpticin family for urinary tract infections using in silico techniques. (2019) JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS 0739-1102 1538-0254 IN PRESS p. IN PRESS
  25. Bazan E.L. et al. Improving the antimicrobial efficacy against resistant Staphylococcus aureus by a combined use of conjugated oligoelectrolytes. (2019) PLOS ONE 1932-6203 14 11
  26. Wang Y. et al. Indole reverses intrinsic antibiotic resistance by activating a novel dual-function importer. (2019) MBIO 2150-7511 10 3
  27. Salazar Vivian A. et al. Insight into the Antifungal Mechanism of Action of Human RNase N-terminus Derived Peptides. (2019) INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 1661-6596 1422-0067 20 18
  28. Martín-Escolano R. et al. Insights into Chagas treatment based on the potential of bacteriocin AS-48. (2019) INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2211-3207 2211-3207 10 1-8
  29. * Spohn Reka et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. (2019) NATURE COMMUNICATIONS 2041-1723 10
  30. Raheem N. et al. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  31. Simpson D.H. et al. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. (2019) CHEMICAL SCIENCE 2041-6520 2041-6539 10 42 9708-9720
  32. Ma Z. et al. Mitigating antibiotic resistance at the livestock-environment interface: A review. (2019) JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY 1017-7825 1738-8872 29 11 1683-1692
  33. Shapiro Rebecca S.. mSphere of Influence: Evolutionary Strategies To Sensitize Drug-Resistant Pathogens. (2019) mSPHERE 2379-5042 4 3
  34. Xu Z. et al. Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa. (2019) CELL REPORTS 2211-1247 29 6 1707-1717.e3
  35. Maltas J. et al. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. (2019) PLOS BIOLOGY 1544-9173 1545-7885 17 10
  36. Wendler J. et al. Proteolytic Degradation of reduced Human Beta Defensin 1 generates a Novel Antibiotic Octapeptide. (2019) SCIENTIFIC REPORTS 2045-2322 9 1
  37. * Szili Petra et al. Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations.. (2019) ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 0066-4804 1098-6596 63 9
  38. Haney Evan F. et al. Reassessing the Host Defense Peptide Landscape. (2019) FRONTIERS IN CHEMISTRY 2296-2646 7
  39. Der Torossian Torres et al. Reprogramming biological peptides to combat infectious diseases. (2019) CHEMICAL COMMUNICATIONS 1359-7345 1364-548X 55 100 15020-15032
  40. Deng Z.-X. et al. Residue-Specialized Membrane Poration Kinetics of Melittin and Its Variants: Insight from Mechanistic Landscapes. (2019) COMMUNICATIONS IN THEORETICAL PHYSICS 0253-6102 71 7 887-902
  41. Sundaramoorthy N.S. et al. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. (2019) SCIENTIFIC REPORTS 2045-2322 9 1
  42. Solstad R.G. et al. Structure-activity relationship studies of shortened analogues of the antimicrobial peptide EeCentrocin 1 from the sea urchin Echinus esculentus. (2019) JOURNAL OF PEPTIDE SCIENCE 1075-2617 1099-1387
  43. Halami P.M.. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512 T with antibacterial activity. (2019) MICROBIAL PATHOGENESIS 0882-4010 1096-1208 128 139-146
  44. Hu C. et al. Synergistic Chemical and Photodynamic Antimicrobial Therapy for Enhanced Wound Healing Mediated by Multifunctional Light-Responsive Nanoparticles. (2019) BIOMACROMOLECULES 1525-7797 1526-4602 20 12 4581-4592
  45. Prats-Ejarque G. et al. Testing a human antimicrobial RNase chimera against bacterial resistance. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10 JUN
  46. Loth K. et al. The ancestral N-terminal domain of big defensins drives bacterially triggered assembly into antimicrobial nanonets. (2019) MBIO 2150-7511 10 5
  47. Torres M.D.T. et al. Toward computer-made artificial antibiotics. (2019) CURRENT OPINION IN MICROBIOLOGY 1369-5274 51 30-38
  48. Mohan Niamh Maire et al. Unlocking NuriPep 1653 From Common Pea Protein: A Potent Antimicrobial Peptide to Tackle a Pan-Drug Resistant Acinetobacter baumannii. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  49. Qiao Z. et al. Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. (2020) FOOD CONTROL 0956-7135 112
  50. Roca-Pinilla R. et al. A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity. (2020) MICROBIAL CELL FACTORIES 1475-2859 19 1
  51. Ricci Maria et al. Anionic food color tartrazine enhances antibacterial efficacy of histatin-derived peptide DHVAR4 by fine-tuning its membrane activity. (2020) QUARTERLY REVIEWS OF BIOPHYSICS 0033-5835 1469-8994 53
  52. Yang Y. et al. A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-biofilm Activity. (2020) FRONTIERS IN MICROBIOLOGY 1664-302X 11
  53. Lazzaro B.P. et al. Antimicrobial peptides: Application informed by evolution. (2020) SCIENCE 0036-8075 1095-9203 368 6490
  54. Qiao Z. et al. Characterization and antibacterial action mode of bacteriocin BMP32r and its application as antimicrobial agent for the therapy of multidrug-resistant bacterial infection. (2020) INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES 0141-8130 164 845-854
  55. Bhattacharjya S. et al. Design, engineering and discovery of novel α-helical and β-boomerang antimicrobial peptides against drug resistant bacteria. (2020) INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 1661-6596 1422-0067 21 16 1-22
  56. Watson K. et al. Developing Novel Host-Based Therapies Targeting Microbicidal Responses in Macrophages and Neutrophils to Combat Bacterial Antimicrobial Resistance. (2020) FRONTIERS IN IMMUNOLOGY 1664-3224 11
  57. Xu X. et al. Dihydrazone-based dynamic covalent epoxy networks with high creep resistance, controlled degradability, and intrinsic antibacterial properties from bioresources. (2020) JOURNAL OF MATERIALS CHEMISTRY A 2050-7488 2050-7496 8 22 11261-11274
  58. Mela I. et al. DNA Nanostructures for Targeted Antimicrobial Delivery. (2020) ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 1433-7851 1521-3773 59 31 12698-12702
  59. Mela I. et al. DNA Nanostructures for Targeted Antimicrobial Delivery. (2020) ANGEWANDTE CHEMIE 0044-8249 1521-3757 132 31 12798-12802
  60. Grolmusz Vince Kornel et al. Exploiting collateral sensitivity controls growth of mixed culture of sensitive and resistant cells and decreases selection for resistant cells in a cell line model. (2020) CANCER CELL INTERNATIONAL 1475-2867 20 1 p. &
  61. Hammond K. et al. Flowering Poration—A Synergistic Multi-Mode Antibacterial Mechanism by a Bacteriocin Fold. (2020) ISCIENCE 2589-0042 23 8
  62. Ehmann Dirk et al. Fragmentation of Human Neutrophil alpha-Defensin 4 to Combat Multidrug Resistant Bacteria. (2020) FRONTIERS IN MICROBIOLOGY 1664-302X 11
  63. Jiang Z. et al. Graphene biosensors for bacterial and viral pathogens. (2020) BIOSENSORS & BIOELECTRONICS 0956-5663 166
  64. Ma W. et al. Individual Roles of Peptides PGLa and Magainin 2 in Synergistic Membrane Poration. (2020) LANGMUIR 0743-7463 1520-5827 36 26 7190-7199
  65. Kapach G. et al. Loss of the Periplasmic Chaperone Skp and Mutations in the Efflux Pump AcrAB-TolC Play a Role in Acquired Resistance to Antimicrobial Peptides in Salmonella typhimurium. (2020) FRONTIERS IN MICROBIOLOGY 1664-302X 11
  66. Roemhild R. et al. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. (2020) PLOS BIOLOGY 1544-9173 1545-7885 18 1
  67. Qi P. et al. Multichannel bacterial discrimination based on recognition and disintegration disparity of short antimicrobial peptides. (2020) ANALYTICAL BIOCHEMISTRY 0003-2697 1096-0309 600
  68. Fodor András et al. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides—A Review. (2020) PATHOGENS 2076-0817 9 7
  69. Sinha S. et al. NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle: Implications in antimicrobial activity. (2020) BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 0005-2736 1862 11
  70. * Manteghi Reihaneh et al. Pegylation and formulation strategy of Anti-Microbial Peptide (AMP) according to the quality by design approach. (2020) EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES 0928-0987 1879-0720 144
  71. Mücke P.-A. et al. Proteomic adaptation of streptococcus pneumoniae to the human antimicrobial peptide LL-37. (2020) MICROORGANISMS 2076-2607 8 3
  72. Burdukiewicz M. et al. Proteomic screening for prediction and design of antimicrobial peptides with ampgram. (2020) INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 1661-6596 1422-0067 21 12 1-13
  73. Pietsch F. et al. Selection of resistance by antimicrobial coatings in the healthcare setting. (2020) JOURNAL OF HOSPITAL INFECTION 0195-6701 106 1 115-125
  74. Kathayat D. et al. Small molecule adjuvants potentiate colistin activity and attenuate resistance development in escherichia coli by affecting pmrab system. (2020) INFECTION AND DRUG RESISTANCE 1178-6973 13 2205-2222
  75. Zhang M. et al. Synergistic chemotherapy, physiotherapy and photothermal therapy against bacterial and biofilms infections through construction of chiral glutamic acid functionalized gold nanobipyramids. (2020) CHEMICAL ENGINEERING JOURNAL 1385-8947 393
  76. Starr C.G. et al. Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. (2020) PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 0027-8424 1091-6490 117 15 8437-8448
  77. Liu Y. et al. Tetrahedral framework nucleic acids deliver antimicrobial peptides with improved effects and less susceptibility to bacterial degradation. (2020) NANO LETTERS 1530-6984 1530-6992 20 5 3602-3610
  78. Maltas J. et al. Using Selection by Nonantibiotic Stressors to Sensitize Bacteria to Antibiotics. (2020) MOLECULAR BIOLOGY AND EVOLUTION 0737-4038 1537-1719 37 5 1394-1406
  79. * Freire K.A. et al. Wasp venom peptide as a new antichagasic agent. (2020) TOXICON 0041-0101 181 71-78
2020-11-25 23:59