1.
NATURE MICROBIOLOGY 3 : 6 pp. 718-731. , 14 p. (2018)
Közlemény:3378998 Érvényesített Forrás Idéző Folyóiratcikk (Szakcikk ) Nyilvános idézők összesen: 48 Független: 42 Függő: 6 Idézett közlemények száma: 9
Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos[3378998] [Érvényesített]
Független idéző: 42, Függő idéző: 6, Nem vizsgált idéző: 0, Összes idéző: 48
  1. Panteleev Pavel et al. Combined Antibacterial Effects of Goat Cathelicidins With Different Mechanisms of Action. (2018) FRONTIERS IN MICROBIOLOGY 1664-302X 9
  2. Von Borowski Rafael et al. Promising Antibiofilm Activity of Peptidomimetics. (2018) FRONTIERS IN MICROBIOLOGY 1664-302X 9
  3. * Talpin A. et al. A20 in dendritic cells restrains intestinal antibacterial peptide expression and preserves commensal homeostasis. (2019) PLOS ONE 1932-6203 1932-6203 14 7
  4. Wang Yan et al. A novel heterologous expression strategy for the quorum-quenching enzyme MomL in Lysobacter enzymogenes to the inhibit pathogenicity of Pectobacterium. (2019) APPLIED MICROBIOLOGY AND BIOTECHNOLOGY 0175-7598 1432-0614 IN PRESS p. IN PRESS
  5. Liu Y. et al. Antagonizing Vancomycin Resistance in Enterococcus by Surface Localized Antimicrobial Display-Derived Peptides. (2019) ACS INFECTIOUS DISEASES 2373-8227
  6. Meng Q. et al. Antibacterial Coatings of Biomedical Surfaces by Polydextran Aldehyde/Polyethylenimine Nanofibers. (2019) ACS Applied Bio Materials 2576-6422 2576-6422 2 1 562-569
  7. Peng Jian et al. Antibacterial mechanism of peptide Cec4 against Acinetobacter baumannii. (2019) INFECTION AND DRUG RESISTANCE 1178-6973 12 2417-2428
  8. Agbale Caleb et al. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. (2019) BIOCHEMISTRY 0006-2960 1520-4995 58 36 3802-3812
  9. Santos R. et al. Are antimicrobial peptides the answer for diabetic foot infection management?. (2019) Megjelent: Diabetic Foot: Prevention and Treatment pp. 51-79
  10. Dragulska Sylwia et al. A Tripeptide-Stabilized Nanoemulsion of Oleic Acid. (2019) JOVE-JOURNAL OF VISUALIZED EXPERIMENTS 1940-087X 144
  11. Cândido E.D.S. et al. Bacterial cross-resistance to anti-infective compounds. Is it a real problem?. (2019) CURRENT OPINION IN PHARMACOLOGY 1471-4892 48 76-81
  12. * Kintses B. et al. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. (2019) NATURE COMMUNICATIONS 2041-1723 10 1
  13. Qu Junyan et al. Crisis of Antimicrobial Resistance in China: Now and the Future. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  14. Vishnepolsky Boris et al. De Novo Design and In Vitro Testing of Antimicrobial Peptides against Gram-Negative Bacteria. (2019) PHARMACEUTICALS 1424-8247 12 2
  15. Al Tall et al. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. (2019) INFECTION AND DRUG RESISTANCE 1178-6973 12 1035-1045
  16. Lu X. et al. Designing Melittin-Graphene Hybrid Complexes for Enhanced Antibacterial Activity. (2019) ADVANCED HEALTHCARE MATERIALS 2192-2640 2192-2659 8 9
  17. * Bocsik Alexandra et al. Dual Action of the PN159/KLAL/MAP Peptide: Increase of Drug Penetration across Caco-2 Intestinal Barrier Model by Modulation of Tight Junctions and Plasma Membrane Permeability.. (2019) PHARMACEUTICS 1999-4923 11 2
  18. Kepiro I.E. et al. Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters. (2019) ACS NANO 1936-0851 1936-086X
  19. Zheng Y. et al. Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10 APR
  20. Singh R. et al. Gold-Ions-Mediated Diproline Peptide Nanocarpets and Their Inhibition of Bacterial Growth. (2019) CHEMISTRYSELECT 2365-6549 4 19 5810-5816
  21. Hong J. et al. How melittin inserts into cell membrane: Conformational changes, inter-peptide cooperation, and disturbance on the membrane. (2019) MOLECULES 1420-3049 24 9
  22. Lu L. et al. Human antimicrobial RNases inhibit intracellular bacterial growth and induce autophagy in mycobacteria-infected macrophages. (2019) FRONTIERS IN IMMUNOLOGY 1664-3224 1664-3224 10 JUL
  23. Shruti S. et al. Identification of therapeutic peptide scaffold from tritrpticin family for urinary tract infections using in silico techniques. (2019) JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS 0739-1102 1538-0254 IN PRESS p. IN PRESS
  24. Bazan E.L. et al. Improving the antimicrobial efficacy against resistant Staphylococcus aureus by a combined use of conjugated oligoelectrolytes. (2019) PLOS ONE 1932-6203 1932-6203 14 11
  25. Wang Y. et al. Indole reverses intrinsic antibiotic resistance by activating a novel dual-function importer. (2019) MBIO 2150-7511 10 3
  26. Salazar Vivian et al. Insight into the Antifungal Mechanism of Action of Human RNase N-terminus Derived Peptides. (2019) INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 1661-6596 1422-0067 20 18
  27. Martín-Escolano R. et al. Insights into Chagas treatment based on the potential of bacteriocin AS-48. (2019) INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2211-3207 2211-3207 10 1-8
  28. * Spohn Reka et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. (2019) NATURE COMMUNICATIONS 2041-1723 10
  29. Raheem N. et al. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  30. Simpson D.H. et al. Metallohelices that kill Gram-negative pathogens using intracellular antimicrobial peptide pathways. (2019) CHEMICAL SCIENCE 2041-6520 2041-6539 10 42 9708-9720
  31. Shapiro Rebecca. mSphere of Influence: Evolutionary Strategies To Sensitize Drug-Resistant Pathogens. (2019) mSPHERE 2379-5042 4 3
  32. Xu Z. et al. Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa. (2019) CELL REPORTS 2211-1247 29 6 1707-1717.e3
  33. Maltas J. et al. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. (2019) PLOS BIOLOGY 1544-9173 1545-7885 17 10
  34. Wendler J. et al. Proteolytic Degradation of reduced Human Beta Defensin 1 generates a Novel Antibiotic Octapeptide. (2019) SCIENTIFIC REPORTS 2045-2322 9 1
  35. * Szili Petra et al. Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations.. (2019) ANTIMICROBIAL AGENTS AND CHEMOTHERAPY 0066-4804 1098-6596 63 9
  36. Haney Evan et al. Reassessing the Host Defense Peptide Landscape. (2019) FRONTIERS IN CHEMISTRY 2296-2646 7
  37. Der Torossian et al. Reprogramming biological peptides to combat infectious diseases. (2019) CHEMICAL COMMUNICATIONS 1359-7345 1364-548X 55 100 15020-15032
  38. Deng Z.-X. et al. Residue-Specialized Membrane Poration Kinetics of Melittin and Its Variants: Insight from Mechanistic Landscapes. (2019) COMMUNICATIONS IN THEORETICAL PHYSICS 0253-6102 71 7 887-902
  39. Sundaramoorthy N.S. et al. Restoring colistin sensitivity in colistin-resistant E. coli: Combinatorial use of MarR inhibitor with efflux pump inhibitor. (2019) SCIENTIFIC REPORTS 2045-2322 9 1
  40. Solstad R.G. et al. Structure-activity relationship studies of shortened analogues of the antimicrobial peptide EeCentrocin 1 from the sea urchin Echinus esculentus. (2019) JOURNAL OF PEPTIDE SCIENCE 1075-2617 1099-1387
  41. Halami P.M.. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512 T with antibacterial activity. (2019) MICROBIAL PATHOGENESIS 0882-4010 1096-1208 128 139-146
  42. Hu C. et al. Synergistic Chemical and Photodynamic Antimicrobial Therapy for Enhanced Wound Healing Mediated by Multifunctional Light-Responsive Nanoparticles. (2019) BIOMACROMOLECULES 1525-7797 1526-4602 20 12 4581-4592
  43. Prats-Ejarque G. et al. Testing a human antimicrobial RNase chimera against bacterial resistance. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10 JUN
  44. Prats-Ejarque Guillem et al. Testing a Human Antimicrobial RNase Chimera Against Bacteria Resistance. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  45. Loth K. et al. The ancestral N-terminal domain of big defensins drives bacterially triggered assembly into antimicrobial nanonets. (2019) MBIO 2150-7511 10 5
  46. Torres M.D.T. et al. Toward computer-made artificial antibiotics. (2019) CURRENT OPINION IN MICROBIOLOGY 1369-5274 51 30-38
  47. Mohan Niamh et al. Unlocking NuriPep 1653 From Common Pea Protein: A Potent Antimicrobial Peptide to Tackle a Pan-Drug Resistant Acinetobacter baumannii. (2019) FRONTIERS IN MICROBIOLOGY 1664-302X 10
  48. * Manteghi Reihaneh et al. Pegylation and formulation strategy of Anti-Microbial Peptide (AMP) according to the quality by design approach. (2020) EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES 0928-0987 1879-0720 144 p. 105197
2020-01-26 20:14