1.
Bocsik, A ; Walter, FR ; Gyebrovszki, A ; Fülöp, L ; Blasig, IE ; Dabrowski, S ; Ötvös, F ; Tóth, A ; Rákhely, G ; Veszelka, S et al.
JOURNAL OF PHARMACEUTICAL SCIENCES 105 : 2 pp. 754-765. , 12 p. (2016)
Közlemény:3009615 Admin láttamozott Forrás Idéző Folyóiratcikk (Szakcikk ) Nyilvános idéző+említés összesen: 23 Független: 17 Függő: 6 Idézett közlemények száma: 13
Folyóiratcikk/Szakcikk (Folyóiratcikk)/Tudományos[3009615] [Admin láttamozott]
Független idéző: 17, Függő idéző: 6, Nem vizsgált idéző: 0, Összes idéző: 23
  1. Nardone V et al. Crystal structure of human E-cadherin-EC1EC2 in complex with a peptidomimetic comparative inhibitor of cadherin hemophilic interaction. (2016) JOURNAL OF MEDICINAL CHEMISTRY 0022-2623 1520-4804 59 10 5089-5094
  2. O’Keeffe E et al. Modulating the paracellular pathway at the blood-brain barrier:current and future approaches for drug delivery to the CNS. (2016) DRUG DISCOVERY TODAY: TECHNOLOGIES 1740-6749 20 35-39
  3. Krizbai IA et al. Pharmaceutical Targeting of the Brain. (2016) CURRENT PHARMACEUTICAL DESIGN 1381-6128 1873-4286 22 35 5442-5462
  4. Gonzalez-Mariscal Lorenza et al. Strategies that Target Tight Junctions for Enhanced Drug Delivery. (2016) CURRENT PHARMACEUTICAL DESIGN 1381-6128 1873-4286 22 35 5313-5346
  5. Baesler Katja et al. The role of tight junctions in skin barrier function and dermal absorption. (2016) JOURNAL OF CONTROLLED RELEASE 0168-3659 1873-4995 242 105-118
  6. * Váradi J et al. Alpha-melanocyte stimulating hormone protects against cytokine-induced barrier damage in Caco-2 intestinal epithelial monolayers. (2017) PLOS ONE 1932-6203 1932-6203 12 1
  7. Gürsoy-özdemir Y et al. Anatomy and Physiology of the Blood-Brain Barrier. (2017) Megjelent: Nanotechnology Methods for Neurological Diseases and Brain Tumors: Drug Delivery across the Blood-Brain Barrier pp. 1-13
  8. Liu M et al. Chitosan functionallized nanocochleates for enhanced oral absorption of cyclosporine A. (2017) SCIENTIFIC REPORTS 2045-2322 7
  9. * Dithmer S et al. Claudin peptidomimetics modulate tissue barriers for enhanced drug delivery. (2017) ANNALS OF THE NEW YORK ACADEMY OF SCIENCES 0077-8923 1749-6632 1397 169-184
  10. Fang J et al. Dahuang Zexie Decoction protects against high-fat diet-induces NAFLD by modulating gut microbiota-mediated Toll-like receptor 4 signaling activation and loss of intestinal barrier. (2017) EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 1741-427X 1741-4288 2017
  11. Ulapane KR et al. Peptides and Drug Delivery: Chapter 8. (2017) Megjelent: PEPTIDES AND PEPTIDE-BASED BIOMATERIALS AND THEIR BIOMEDICAL APPLICATIONS pp. 167-184
  12. Zhu A. Research progress in cellular and molecular mechanisms related to permeability alteration of blood-brain barrier. (2017) CHINESE JOURNAL OF PHARMACOLOGY AND TOXICOLOGY / ZHONG GUO YAO LI XUE YU DU LI XUE ZA ZHI 1000-3002 31 9 889-899
  13. Kristensen M et al. Routes for drug translocation across the blood-brain barrier: Exploiting peptides as delivery vectors. (2017) JOURNAL OF PHARMACEUTICAL SCIENCES 0022-3549 1520-6017 106 9 2326-2334
  14. Geranmayeh MH et al. Stem cells as a promising tool for the restoration of brain neurovascular unit and angiogenic orientation. (2017) MOLECULAR NEUROBIOLOGY 0893-7648 1559-1182 54 10 7689-7705
  15. Monastra Giovanni et al. Alpha-Lactalbumin Effect on Myo-Inositol Intestinal Absorption: In vivo and In vitro. (2018) CURRENT DRUG DELIVERY 1567-2018 1875-5704 15 9 1305-1311
  16. Rahman Mohammed et al. IFN-gamma, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. (2018) BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 0006-291X 1090-2104 507 1-4 274-279
  17. * Meszaros M et al. Niosomes decorated with dual ligands targeting brain endothelial transporters increase cargo penetration across the blood-brain barrier.. (2018) EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES 0928-0987 1879-0720 123 228-240
  18. * Bartos C et al. Optimization of a combined wet milling process in order to produce poly(vinyl alcohol) stabilized nanosuspension. (2018) DRUG DESIGN DEVELOPMENT AND THERAPY 1177-8881 12 1567-1580
  19. * Bartos C et al. Optimization of a combined wet milling process in order to produce poly(vinyl alcohol) stabilized nanosuspension. (2018) DRUG DESIGN DEVELOPMENT AND THERAPY 1177-8881 12 1567-1580
  20. * Harazin A et al. Protection of cultured brain endothelial cells from cytokine-induced damage by α-melanocyte stimulating hormone. (2018) PEERJ 2167-8359 6
  21. Neuhaus W et al. Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin’s claudin-binding domain. (2018) BIOMATERIALS 0142-9612 1878-5905 161 129-143
  22. AboulFotouh K et al. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability. (2018) COLLOIDS AND SURFACES B: BIOINTERFACES 0927-7765 167 82-92
  23. Aboulfotouh K et al. Self-emulsifying drug-delivery systems modulate P-glycoprotein activity: Role of excipients and formulation aspects. (2018) NANOMEDICINE 1743-5889 1748-6963 13 14 1813-1834
2019-11-12 05:04