TY - JOUR AU - Glatz, Attila AU - Pilbat, Ana Maria AU - Nemeth, GL AU - Kontár, Katalin AU - Jósvay, Katalin AU - Hunya, Ákos AU - Udvardy, Andor AU - Gombos, Imre AU - Péter, Mária AU - Balogh, Gábor AU - Horváth, Ibolya AU - Vigh, László AU - Török, Zsolt TI - Involvement of small heat shock proteins, trehalose, and lipids in the thermal stress management in Schizosaccharomyces pombe. JF - CELL STRESS & CHAPERONES J2 - CELL STRESS CHAPERON VL - 21 PY - 2016 IS - 2 SP - 327 EP - 338 PG - 12 SN - 1355-8145 DO - 10.1007/s12192-015-0662-4 UR - https://m2.mtmt.hu/api/publication/2990307 ID - 2990307 N1 - Export Date: 20 June 2019 CODEN: CSCHF Cited By :24 Export Date: 27 May 2021 CODEN: CSCHF Correspondence Address: Török, Z.; Institute of Biochemistry, Hungary; email: torok.zsolt@brc.mta.hu AB - Changes in the levels of three structurally and functionally different important thermoprotectant molecules, namely small heat shock proteins (sHsps), trehalose, and lipids, have been investigated upon heat shock in Schizosaccharomyces pombe. Both alpha-crystallin-type sHsps (Hsp15.8 and Hsp16) were induced after prolonged high-temperature treatment but with different kinetic profiles. The shsp null mutants display a weak, but significant, heat sensitivity indicating their importance in the thermal stress management. The heat induction of sHsps is different in wild type and in highly heat-sensitive trehalose-deficient (tps1Delta) cells; however, trehalose level did not show significant alteration in shsp mutants. The altered timing of trehalose accumulation and induction of sHsps suggest that the disaccharide might provide protection at the early stage of the heat stress while elevated amount of sHsps are required at the later phase. The cellular lipid compositions of two different temperature-adapted wild-type S. pombe cells are also altered according to the rule of homeoviscous adaptation, indicating their crucial role in adapting to the environmental temperature changes. Both Hsp15.8 and Hsp16 are able to bind to different lipids isolated from S. pombe, whose interaction might provide a powerful protection against heat-induced damages of the membranes. Our data suggest that all the three investigated thermoprotectant macromolecules play a pivotal role during the thermal stress management in the fission yeast. LA - English DB - MTMT ER -