TY - JOUR AU - Kovács, Viktória Barbara AU - Tóthpálné Hidegh, Gyöngyvér AU - Rácz, Erika AU - Szücs, Botond AU - Csókai, Viktor AU - Józsa, Viktor TI - Life cycle assessment of a micro-region Hungarian municipal solid waste: Evaluation of six waste-to-energy scenarios JF - ENERGY CONVERSION AND MANAGEMENT J2 - ENERG CONVERS MANAGE VL - 294 PY - 2023 PG - 13 SN - 0196-8904 DO - 10.1016/j.enconman.2023.117568 UR - https://m2.mtmt.hu/api/publication/34111414 ID - 34111414 N1 - Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Energy Engineering, Műegyetem rkp. 3., Budapest, H-1111, Hungary 3B Hungária Ltd., Wlassics Gyula út 13., Zalaegerszeg, H-8900, Hungary LA - English DB - MTMT ER - TY - JOUR AU - Mayer, Martin János AU - Biró, Bence AU - Szücs, Botond AU - Aszódi, Attila TI - Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning JF - APPLIED ENERGY J2 - APPL ENERG VL - 336 PY - 2023 PG - 23 SN - 0306-2619 DO - 10.1016/j.apenergy.2023.120801 UR - https://m2.mtmt.hu/api/publication/33638869 ID - 33638869 N1 - Department of Energy Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, H-1111, Hungary Institute of Nuclear Techniques, Faculty of Natural Sciences, Budapest University of Technology and Economics, Műegyetem rkp. 9, Budapest, H-1111, Hungary Correspondence Address: Mayer, M.J.; Department of Energy Engineering, Műegyetem rkp. 3, Hungary; email: mayer@energia.bme.hu AB - The increasing penetration of weather-dependent renewable energy generation calls for high-resolution modeling of the possible future energy mixes to support the energy strategy and policy decisions. Simulations relying on the data of only a few years, however, are not only unreliable but also unable to quantify the uncertainty resulting from the year-to-year variability of the weather conditions. This paper presents a new method based on artificial neural networks that map the relationship between the weather data from atmospheric reanalysis and the photovoltaic and wind power generation and the electric load. The regression models are trained based on the data of the last 3 to 6 years, and then they are used to generate synthetic hourly renewable power production and load profiles for 42 years as an ensemble representation of possible outcomes in the future. The modeled profiles are post-processed by a novel variance-correction method that ensures the statistical similarity of the modeled and real data and thus the reliability of the simulation based on these profiles. The probabilistic modeling enabled by the proposed approach is demonstrated in two practical applications for the Hungarian electricity system. First, the so-called Dunkelflaute (dark doldrum) events, are analyzed and categorized. The results reveal that Dunkelflaute events most frequently happen on summer nights, and their typical duration is less than 12 h, even though events ranging through multiple days are also possible. Second, the renewable energy supply is modeled for different photovoltaic and wind turbine installed capacities. Based on our calculations, the share of the annual power consumption that weather-dependent renewable generation can directly cover is up to 60% in Hungary, even with very high installed capacities and overproduction, and higher carbon-free electricity share targets can only be achieved with an energy mix containing nuclear power and renewable sources. The proposed method can easily be extended to other countries and used in more detailed electricity market simulations in the future. LA - English DB - MTMT ER - TY - CHAP AU - Molnar, A.J. AU - Szücs, Botond TI - The effects of increasing solar energy sources in the Hungarian electricity system T2 - 2022 8th International Youth Conference on Energy (IYCE) PB - IEEE CY - Piscataway (NJ) SN - 9781665487221 T3 - International Youth Conference on Energy, IYCE, ISSN 2770-8500 PY - 2022 PG - 6 DO - 10.1109/IYCE54153.2022.9857521 UR - https://m2.mtmt.hu/api/publication/33113353 ID - 33113353 LA - English DB - MTMT ER - TY - THES AU - Szücs, Botond TI - Újszerű, megújuló tüzelőanyagok és tüzelőanyag keverékek fluidizációs technológiával történő hasznosításának vizsgálata PB - Budapesti Műszaki és Gazdaságtudományi Egyetem PY - 2022 SP - 109 UR - https://m2.mtmt.hu/api/publication/33643768 ID - 33643768 LA - Hungarian DB - MTMT ER - TY - JOUR AU - Al-Agha, Mohamed Sobhi Ahmed AU - Szücs, Botond AU - Szentannai, Pál TI - Numerical study of mixing and heat transfer of SRF particles in a bubbling fluidized bed JF - JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY J2 - J THERM ANAL CALORIM VL - 142 PY - 2020 IS - 2 SP - 1087 EP - 1096 PG - 9 SN - 1388-6150 DO - 10.1007/s10973-019-09135-2 UR - https://m2.mtmt.hu/api/publication/31179550 ID - 31179550 N1 - Correspondence Address: Szucs, B.; Department of Energy Engineering, Hungary; email: szucsbotond@energia.bme.hu Funding details: 16-1- 2016-0007 Funding details: NKP-19-3-I-BME-270 Funding details: FIEK 16-1- 2016-0007 Funding details: Budapesti Műszaki és Gazdaságtudományi Egyetem, BME Funding details: Ministry of Technology, Innovation and Citizens' Services Funding text 1: Open access funding provided by Budapest University of Technology and Economics (BME). This work was supported by the National Research, Development and Innovation Fund of Hungary in the frame of FIEK 16-1- 2016-0007 (Higher Education and Industrial Cooperation Center) project and the ÚNKP-19-3-I-BME-270 New National Excellence Program of the Ministry for Innovation and Technology. A , B , C , D Coefficients (–) C D \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_{\\rm D}$$\\end{document} Drag coefficient (–) C p \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$C_{\\rm p}$$\\end{document} Particle specific heat ( J kg - 1 K - 1 \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\hbox {J\\,kg}^{-1}\\, {\\mathrm{K}}^{-1}}$$\\end{document} ) d p \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d_{\\rm p}$$\\end{document} Particle diameter ( μ m ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\upmu \\mathrm{m}})$$\\end{document} ε \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\varepsilon$$\\end{document} Void fraction (–) g Gravity acceleration ( ms - 2 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({{\\mathrm{ms}}^{-2}})$$\\end{document} h Heat transfer coefficient ( Wm - 2 K - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{Wm}^{-2}\\,\\mathrm{K}^{-1}})$$\\end{document} K gs \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$K_{\\rm gs}$$\\end{document} Momentum exchange coefficient ( kgm - 3 s - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{kgm}^{-3}\\,{\\rm s}^{-1}})$$\\end{document} λ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lambda$$\\end{document} Thermal conductivity ( Wm - 1 K - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{Wm}^{-1}{\\mathrm{K}}^{-1}})$$\\end{document} μ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu$$\\end{document} Viscosity (Pas) Nu Nusselt number = h d p λ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{hd_{\\rm p}}{\\lambda }$$\\end{document} (–) Pr Prandtl number = μ C p λ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{\\mu C_{\\rm p}}{\\lambda }$$\\end{document} (–) ρ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\rho$$\\end{document} Density ( kgm - 3 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{kgm}^{-3}})$$\\end{document} Re Reynolds number = ρ g d p | u g - u p | μ g \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\frac{\\rho _{\\rm g}d_{\\rm p}|u_{\\rm g} - u_{\\rm p}|}{\\mu _{\\rm g}}$$\\end{document} (–) T Temperature ( ∘ C ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(^{\\circ }\\mathrm{C})$$\\end{document} u Velocity ( ms - 1 ) \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$({\\mathrm{ms}^{-1}})$$\\end{document} ψ \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\psi$$\\end{document} Particle shape factor (–) Funding text 2: Open access funding provided by Budapest University of Technology and Economics (BME). This work was supported by the National Research, Development and Innovation Fund of Hungary in the frame of FIEK 16-1- 2016-0007 (Higher Education and Industrial Cooperation Center) project and the ?NKP-19-3-I-BME-270 New National Excellence Program of the Ministry for Innovation and Technology. Funding Agency and Grant Number: Budapest University of Technology and Economics (BME); National Research, Development and Innovation Fund of Hungary [FIEK 16-1- 2016-0007]; New National Excellence Program of the Ministry for Innovation and Technology [uNKP-19-3-I-BME-270] Funding text: Open access funding provided by Budapest University of Technology and Economics (BME). This work was supported by the National Research, Development and Innovation Fund of Hungary in the frame of FIEK 16-1- 2016-0007 (Higher Education and Industrial Cooperation Center) project and the uNKP-19-3-I-BME-270 New National Excellence Program of the Ministry for Innovation and Technology. LA - English DB - MTMT ER - TY - JOUR AU - Szücs, Botond AU - Al-Agha, Mohamed Sobhi Ahmed AU - Szentannai, Pál TI - Experimental study of entrainment and mixing of renewable active particles in fluidized beds JF - APPLIED SCIENCES-BASEL J2 - APPL SCI-BASEL VL - 10 PY - 2020 IS - 12 PG - 12 SN - 2076-3417 DO - 10.3390/app10124268 UR - https://m2.mtmt.hu/api/publication/32759601 ID - 32759601 LA - English DB - MTMT ER - TY - JOUR AU - Szücs, Botond AU - Szentannai, Pál TI - Experimental investigation on mixing and segregation behavior of oxygen carrier and biomass particle in fluidized bed JF - PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING J2 - PERIOD POLYTECH MECH ENG VL - 63 PY - 2019 IS - 3 SP - 188 EP - 194 PG - 7 SN - 0324-6051 DO - 10.3311/PPme.13764 UR - https://m2.mtmt.hu/api/publication/30707348 ID - 30707348 LA - English DB - MTMT ER - TY - JOUR AU - Szentannai, Pál AU - Szücs, Botond TI - Vertical arrangement of SRF particles in a stationary fluidized bed JF - POWDER TECHNOLOGY J2 - POWDER TECHNOL VL - 325 PY - 2018 SP - 209 EP - 217 PG - 9 SN - 0032-5910 DO - 10.1016/j.powtec.2017.11.015 UR - https://m2.mtmt.hu/api/publication/3399180 ID - 3399180 LA - English DB - MTMT ER - TY - JOUR AU - Szücs, Botond AU - Szentannai, Pál TI - Hordozóhurkos tüzeléshez használt oxigénhordozó vizsgálata JF - ENERGIAGAZDÁLKODÁS J2 - ENERGIAGAZDÁLKODÁS VL - 59 PY - 2018 IS - 3-4 SP - 20 EP - 25 PG - 6 SN - 0021-0757 UR - https://m2.mtmt.hu/api/publication/3415490 ID - 3415490 LA - Hungarian DB - MTMT ER - TY - CONF AU - Szücs, Botond AU - Szentannai, Pál ED - Polish, Section of the Combustion Institute TI - Distribution of SRF Particles in Bubbling Fluidized Bed T2 - Proceedings of the XXIII International Symposium on Combustion Processes PY - 2017 PG - 15 UR - https://m2.mtmt.hu/api/publication/30392190 ID - 30392190 N1 - 15 dia LA - English DB - MTMT ER -