TY - JOUR AU - Tresóné Takács, Virág AU - Bardóczi, Zsuzsanna AU - Orosz, Áron AU - Major, Ábel AU - Tar, Luca AU - Berki, Péter AU - Papp, Péter AU - Mayer, Márton István AU - Sebők, Hunor AU - Zsolt, Luca AU - Sós, Katalin Eszter AU - Káli, Szabolcs AU - Freund, Tamás AU - Nyíri, Gábor TI - Synaptic and dendritic architecture of different types of hippocampal somatostatin interneurons JF - PLOS BIOLOGY J2 - PLOS BIOL VL - 22 PY - 2024 IS - 3 PG - 54 SN - 1544-9173 DO - 10.1371/journal.pbio.3002539 UR - https://m2.mtmt.hu/api/publication/34749015 ID - 34749015 N1 - Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary János Szentágothai Doctoral, School of Neurosciences, Semmelweis University, Budapest, Hungary Roska Tamás Doctoral, School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary Cited By :1 Export Date: 1 August 2024 CODEN: PBLIB Correspondence Address: Nyiri, G.; Laboratory of Cerebral Cortex Research, Hungary; email: nyiri@koki.hu Chemicals/CAS: somatostatin, 38916-34-6, 51110-01-1; Somatostatin AB - GABAergic inhibitory neurons fundamentally shape the activity and plasticity of cortical circuits. A major subset of these neurons contains somatostatin (SOM); these cells play crucial roles in neuroplasticity, learning, and memory in many brain areas including the hippocampus, and are implicated in several neuropsychiatric diseases and neurodegenerative disorders. Two main types of SOM-containing cells in area CA1 of the hippocampus are oriens-lacunosum-moleculare (OLM) cells and hippocampo-septal (HS) cells. These cell types show many similarities in their soma-dendritic architecture, but they have different axonal targets, display different activity patterns in vivo, and are thought to have distinct network functions. However, a complete understanding of the functional roles of these interneurons requires a precise description of their intrinsic computational properties and their synaptic interactions. In the current study we generated, analyzed, and make available several key data sets that enable a quantitative comparison of various anatomical and physiological properties of OLM and HS cells in mouse. The data set includes detailed scanning electron microscopy (SEM)-based 3D reconstructions of OLM and HS cells along with their excitatory and inhibitory synaptic inputs. Combining this core data set with other anatomical data, patch-clamp electrophysiology, and compartmental modeling, we examined the precise morphological structure, inputs, outputs, and basic physiological properties of these cells. Our results highlight key differences between OLM and HS cells, particularly regarding the density and distribution of their synaptic inputs and mitochondria. For example, we estimated that an OLM cell receives about 8,400, whereas an HS cell about 15,600 synaptic inputs, about 16% of which are GABAergic. Our data and models provide insight into the possible basis of the different functionality of OLM and HS cell types and supply essential information for more detailed functional models of these neurons and the hippocampal network. LA - English DB - MTMT ER - TY - JOUR AU - Király, Bálint AU - Domonkos, Andor AU - Jelitai, Márta AU - Lopes-dos-Santos, Vítor AU - Martínez-Bellver, Sergio AU - Kocsis, Barnabás AU - Schlingloff, Dániel AU - Joshi, Abhilasha AU - Salib, Minas AU - Fiáth, Richárd AU - Barthó, Péter AU - Ulbert, István AU - Freund, Tamás AU - Viney, Tim J. AU - Dupret, David AU - Varga, Viktor AU - Hangya, Balázs TI - Author Correction: The medial septum controls hippocampal supra-theta oscillations JF - NATURE COMMUNICATIONS J2 - NAT COMMUN VL - 14 PY - 2023 IS - 1 PG - 1 SN - 2041-1723 DO - 10.1038/s41467-023-43190-6 UR - https://m2.mtmt.hu/api/publication/34400320 ID - 34400320 LA - English DB - MTMT ER - TY - JOUR AU - Király, Bálint AU - Domonkos, Andor AU - Jelitai, Márta AU - Lopes-dos-Santos, Vítor AU - Martínez-Bellver, Sergio AU - Kocsis, Barnabás AU - Schlingloff, Dániel AU - Joshi, Abhilasha AU - Salib, Minas AU - Fiáth, Richárd AU - Barthó, Péter AU - Ulbert, István AU - Freund, Tamás AU - Viney, Tim J. AU - Dupret, David AU - Varga, Viktor AU - Hangya, Balázs TI - The medial septum controls hippocampal supra-theta oscillations JF - NATURE COMMUNICATIONS J2 - NAT COMMUN VL - 14 PY - 2023 IS - 1 PG - 25 SN - 2041-1723 DO - 10.1038/s41467-023-41746-0 UR - https://m2.mtmt.hu/api/publication/34188237 ID - 34188237 AB - Hippocampal theta oscillations orchestrate faster beta-to-gamma oscillations facilitating the segmentation of neural representations during navigation and episodic memory. Supra-theta rhythms of hippocampal CA1 are coordinated by local interactions as well as inputs from the entorhinal cortex (EC) and CA3 inputs. However, theta-nested gamma-band activity in the medial septum (MS) suggests that the MS may control supra-theta CA1 oscillations. To address this, we performed multi-electrode recordings of MS and CA1 activity in rodents and found that MS neuron firing showed strong phase-coupling to theta-nested supra-theta episodes and predicted changes in CA1 beta-to-gamma oscillations on a cycle-by-cycle basis. Unique coupling patterns of anatomically defined MS cell types suggested that indirect MS-to-CA1 pathways via the EC and CA3 mediate distinct CA1 gamma-band oscillations. Optogenetic activation of MS parvalbumin-expressing neurons elicited theta-nested beta-to-gamma oscillations in CA1. Thus, the MS orchestrates hippocampal network activity at multiple temporal scales to mediate memory encoding and retrieval. LA - English DB - MTMT ER - TY - JOUR AU - Ecker, András AU - Bagi, Bence AU - Vértes, Eszter AU - Steinbach-Németh, Orsolya AU - Karlócai, Rita AU - Papp, Orsolya I AU - Miklós, István AU - Hájos, Norbert AU - Freund, Tamás AU - Gulyás, Attila AU - Káli, Szabolcs TI - Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3 JF - ELIFE J2 - ELIFE VL - 11 PY - 2022 PG - 29 SN - 2050-084X DO - 10.7554/eLife.71850 UR - https://m2.mtmt.hu/api/publication/32660835 ID - 32660835 AB - Hippocampal place cells are activated sequentially as an animal explores its environment. These activity sequences are internally recreated ('replayed'), either in the same or reversed order, during bursts of activity (sharp wave-ripples [SWRs]) that occur in sleep and awake rest. SWR-associated replay is thought to be critical for the creation and maintenance of long-term memory. In order to identify the cellular and network mechanisms of SWRs and replay, we constructed and simulated a data-driven model of area CA3 of the hippocampus. Our results show that the chain-like structure of recurrent excitatory interactions established during learning not only determines the content of replay, but is essential for the generation of the SWRs as well. We find that bidirectional replay requires the interplay of the experimentally confirmed, temporally symmetric plasticity rule, and cellular adaptation. Our model provides a unifying framework for diverse phenomena involving hippocampal plasticity, representations, and dynamics, and suggests that the structured neural codes induced by learning may have greater influence over cortical network states than previously appreciated. LA - English DB - MTMT ER - TY - JOUR AU - Kocsis, Barnabás AU - Martínez-Bellver, Sergio AU - Fiáth, Richárd AU - Domonkos, Andor AU - Tóthné Sviatkó, Katalin AU - Schlingloff, Dániel AU - Barthó, Péter AU - Freund, Tamás AU - Ulbert, István AU - Káli, Szabolcs AU - Varga, Viktor AU - Hangya, Balázs TI - Huygens synchronization of medial septal pacemaker neurons generates hippocampal theta oscillation JF - CELL REPORTS J2 - CELL REP VL - 40 PY - 2022 IS - 5 PG - 30 SN - 2211-1247 DO - 10.1016/j.celrep.2022.111149 UR - https://m2.mtmt.hu/api/publication/33041472 ID - 33041472 LA - English DB - MTMT ER - TY - JOUR AU - Jelitai, Márta AU - Barth, Albert AU - Komlósi, Ferenc AU - Freund, Tamás AU - Varga, Viktor TI - Activity and Coupling to Hippocampal Oscillations of Median Raphe GABAergic Cells in Awake Mice. JF - FRONTIERS IN NEURAL CIRCUITS J2 - FRONT NEURAL CIRCUIT VL - 15 PY - 2021 IS - 17 PG - 12 SN - 1662-5110 DO - 10.3389/fncir.2021.784034 UR - https://m2.mtmt.hu/api/publication/32528863 ID - 32528863 LA - English DB - MTMT ER - TY - JOUR AU - Sáray, Sára AU - Rössert, Christian A. AU - Appukuttan, Shailesh AU - Migliore, Rosanna AU - Vitale, Paola AU - Lupascu, Carmen A. AU - Bologna, Luca L. AU - Van Geit, Werner AU - Romani, Armando AU - Davison, Andrew P. AU - Muller, Eilif AU - Freund, Tamás AU - Káli, Szabolcs TI - HippoUnit: A software tool for the automated testing and systematic comparison of detailed models of hippocampal neurons based on electrophysiological data JF - PLOS COMPUTATIONAL BIOLOGY J2 - PLOS COMPUT BIOL VL - 17 PY - 2021 IS - 1 SN - 1553-734X DO - 10.1371/journal.pcbi.1008114 UR - https://m2.mtmt.hu/api/publication/31938779 ID - 31938779 N1 - Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary Institute of Experimental Medicine, Budapest, Hungary Blue Brain Project, Ecole Polytechnique Federale de Lausanne, Geneva, Switzerland Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique/Universite Paris-Saclay, Gif-sur-Yvette, France Institute of Biophysics, National Research Council, Palermo, Italy Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, Canada CHU Sainte-Justine Research Center, Montreal, Canada Quebec Artificial Intelligence Institute (Mila), Montreal, Canada Cited By :1 Export Date: 1 February 2022 Funding details: 720270, 785907, SGA1 Funding details: European Commission, EC Funding details: European Social Fund, ESF, EFOP-3.6.3-VEKOP- 16-2017-00002 Funding text 1: This project received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under Specific Grant Agreements No. 720270 and No. 785907 (Human Brain Project SGA1 and SGA2). SS has been supported by the UNKP-19-3-III New National Excellence Program of the Ministry For Innovation and Technology (Hungary), and the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP- 16-2017-00002). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. LA - English DB - MTMT ER - TY - JOUR AU - Laszlovszky, Tamás Kristóf AU - Schlingloff, Dániel AU - Hegedüs, Panna AU - Freund, Tamás AU - Gulyás, Attila AU - Kepecs, Adam AU - Hangya, Balázs TI - Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types (vol 93, pg 513, 2020) JF - NATURE NEUROSCIENCE J2 - NAT NEUROSCI VL - 23 PY - 2020 IS - 10 SP - 1310 EP - 1310 PG - 1 SN - 1097-6256 DO - 10.1038/s41593-020-0702-y UR - https://m2.mtmt.hu/api/publication/31627527 ID - 31627527 LA - English DB - MTMT ER - TY - JOUR AU - Laszlovszky, Tamás Kristóf AU - Schlingloff, Dániel AU - Hegedüs, Panna AU - Freund, Tamás AU - Gulyás, Attila AU - Kepecs, Adam AU - Hangya, Balázs TI - Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types JF - NATURE NEUROSCIENCE J2 - NAT NEUROSCI VL - 23 PY - 2020 IS - 8 SP - 992 EP - 1003 PG - 12 SN - 1097-6256 DO - 10.1038/s41593-020-0648-0 UR - https://m2.mtmt.hu/api/publication/31357306 ID - 31357306 AB - Basal forebrain cholinergic neurons (BFCNs) modulate synaptic plasticity, cortical processing, brain states and oscillations. However, whether distinct types of BFCNs support different functions remains unclear. Therefore, we recorded BFCNs in vivo, to examine their behavioral functions, and in vitro, to study their intrinsic properties. We identified two distinct types of BFCNs that differ in their firing modes, synchronization properties and behavioral correlates. Bursting cholinergic neurons (Burst-BFCNs) fired synchronously, phase-locked to cortical theta activity and fired precisely timed bursts after reward and punishment. Regular-firing cholinergic neurons (Reg-BFCNs) were found predominantly in the posterior basal forebrain, displayed strong theta rhythmicity and responded with precise single spikes after behavioral outcomes. In an auditory detection task, synchronization of Burst-BFCNs to the auditory cortex predicted the timing of behavioral responses, whereas tone-evoked cortical coupling of Reg-BFCNs predicted correct detections. We propose that differential recruitment of two basal forebrain cholinergic neuron types generates behavior-specific cortical activation. LA - English DB - MTMT ER - TY - JOUR AU - Sós, Katalin Eszter AU - Mayer, Márton István AU - Tresóné Takács, Virág AU - Major, Ábel AU - Bardóczi, Zsuzsanna AU - Beres, Barnabas M. AU - Szeles, Tamás AU - Saito, Takashi AU - Saido, Takaomi C. AU - Mody, István AU - Freund, Tamás AU - Nyíri, Gábor TI - Amyloid β induces interneuron-specific changes in the hippocampus of APPNL-F mice JF - PLOS ONE J2 - PLOS ONE VL - 15 PY - 2020 IS - 5 PG - 28 SN - 1932-6203 DO - 10.1371/journal.pone.0233700 UR - https://m2.mtmt.hu/api/publication/31337319 ID - 31337319 N1 - Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, HAS, Budapest, Hungary János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary Laboratory for Proteolytic Neuroscience, RIKEN, Center for Brain Science, Saitama, Japan Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Aichi, Japan Department of Neurology, University of California, Los Angeles, CA, United States Cited By :1 Export Date: 14 September 2021 CODEN: POLNC Correspondence Address: Nyiri, G.; Department of Cellular and Network Neurobiology, Hungary; email: nyiri.gabor@koki.mta.hu Chemicals/CAS: amyloid beta protein, 109770-29-8; parvalbumin, 56094-12-3, 83667-75-8; Amyloid beta-Peptides; amyloid beta-protein (1-40); amyloid beta-protein (1-42); Peptide Fragments; Receptors, GABA-A Funding details: 2017-1.2.1-NKP-2017-00002 Funding details: National Institutes of Health, NIH, NS030549 Funding details: Hungarian Scientific Research Fund, OTKA, K119521, NN125643, VKSZ_14-1-2O15-0155 Funding details: Emberi Eroforrások Minisztériuma, EMMI, EFOP-3.6.3-VEKOP-16-2017-00009, UNKP-16-2-I-ELTE-8315/22/2016, UNKP-18-02-I-SE-20 Funding details: National Research, Development and Innovation Office Funding text 1: This work was supported by the U.S. National Institutes of Health (www.nih.gov, NS030549), the National Research, Development and Innovation Office, Hungary (nkfih.gov.hu/forthe-applicants, OTKA K119521, OTKA NN125643, and VKSZ_14-1-2O15-0155) and the Hungarian Brain Research Program (agykutatas.hu, 2017-1.2.1-NKP-2017-00002). The New Nationa Excellence Program of the Ministry of Human Capacities (www.kormany.hu/en/ministry-ofhuman-resources), Hungary supported M.I.M (UNKP-16-2-I-ELTE-8315/22/2016) and A.M. (UNKP-18-02-I-SE-20). K.E.S. was supported by EFOP-3.6.3-VEKOP-16-2017-00009, Development of education of medicine, health and pharmaceutical sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.*%blankline%* LA - English DB - MTMT ER -