New machine-learning models outperform conventional risk assessment tools in Gastrointestinal bleeding

Boros, Eszter; Pintér, József [Pintér, József (Matematika, Adatt...), author] Department of Stochastics (BUTE / FNS / IM); Molontay, Roland [Molontay, Roland (adattudomány, hál...), author] Department of Stochastics (BUTE / FNS / IM); Institute of Biostatistics and Network Sciences (SU / KSZE); Prószéky, Kristóf Gergely; Vörhendi, Nóra [Vörhendi, Nóra (Gasztroenterológia), author] Institute for Translational Medicine (UP / UPMS); Simon, Orsolya Anna [Simon, Orsolya Anna (Belgyógyászat), author] 1st Department of Internal Medicine (UP / UPMS); Institute for Translational Medicine (UP / UPMS); Teutsch, Brigitta [Teutsch, Brigitta (Gasztroenterológia), author] Institute for Translational Medicine (UP / UPMS); Centre for Translational Medicine (SU / KSZE); Pálinkás, Dániel [Pálinkás, Dániel (gasztroenterológia), author] Centre for Translational Medicine (SU / KSZE); Frim, Levente [Frim, Levente (Orvostudomány), author] Institute for Translational Medicine (UP / UPMS); Tari, Edina [Tari, Edina (Gasztroenterológia), author] Institute of Pancreatic Diseases (SU / FM / C); Centre for Translational Medicine (SU / KSZE); Gagyi, Endre Botond [Gagyi, Endre (Gasztroenterológia), author] Centre for Translational Medicine (SU / KSZE); Szabó, Imre [Szabó, Imre (Belgyógyászat), author] 1st Department of Internal Medicine (UP / UPMS); Hágendorn, Roland [Hágendorn, Roland (Belgyógyászat, in...), author] 1st Department of Internal Medicine (UP / UPMS); Vincze, Áron [Vincze, Áron (Klinikai gasztroe...), author] 1st Department of Internal Medicine (UP / UPMS); Izbéki, Ferenc; Abonyi-Tóth, Zsolt [Abonyi-Tóth, Zsolt (biomatematika), author]; Szentesi, Andrea [Szentesi, Andrea Ildikó (Pankreatológia), author] Institute for Translational Medicine (UP / UPMS); Vass, Vivien; Hegyi, Péter [Hegyi, Péter (Gasztroenterológia), author] Institute for Translational Medicine (UP / UPMS); Centre for Translational Medicine (SU / KSZE); Erőss, Bálint ✉ [Erőss, Bálint Mihály (Gasztroenterológia), author] Institute for Translational Medicine (UP / UPMS); Centre for Translational Medicine (SU / KSZE)

English Article (Journal Article) Scientific
Published: SCIENTIFIC REPORTS 2045-2322 15 (1) Paper: 6371 , 10 p. 2025
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Identifiers
Rapid and accurate identification of high-risk acute gastrointestinal bleeding (GIB) patients is essential. We developed two machine-learning (ML) models to calculate the risk of in-hospital mortality in patients admitted due to overt GIB. We analyzed the prospective, multicenter Hungarian GIB Registry's data. The predictive performance of XGBoost and CatBoost machine-learning algorithms with the Glasgow-Blatchford (GBS), pre-endoscopic Rockall and ABC scores were compared. We evaluated our models using five-fold cross-validation, and performance was measured by area under receiver operating characteristic curve (AUC) analysis with 95% confidence intervals (CI). Overall, we included 1,021 patients in the analysis. In-hospital death occurred in 108 cases. The XGBoost and the CatBoost model identified patients who died with an AUC of 0.84 (CI:0.76-0.90; 0.77-0.90; respectively) in the internal validation set, whereas the GBS and pre-endoscopic Rockall clinical scoring system's performance was significantly lower, AUC values of 0.68 (CI:0.62-0.74) and 0.62 (CI:0.56-0.67), respectively. ABC score had an AUC of 0.77 (CI:0.71-0.83). The XGBoost model had a specificity of 0.96 (CI:0.92-0.98) at a sensitivity of 0.25 (CI:0.10-0.43) compared with the CatBoost model, which had a specificity of 0.74 (CI:0.66-0.83) at a sensitivity of 0.78 (CI:0.57-0.95). XGBoost and the CatBoost models evaluate the mortality risk of acute GI bleeding better, than the conventional risk assessment tools.
Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
2025-04-04 18:18