mtmt
The Hungarian Scientific Bibliography
XML
JSON
Public search
Magyarul
2nd World Conference on Explainable Artificial Intelligence, xAI 2024
Longo, L. [ed.]
;
Lapuschkin, S. [ed.]
;
Seifert, C. [ed.]
English Scientific
Published: Springer Science and Business Media B.V.
2024
Conference:
2nd World Conference on Explainable Artificial Intelligence, xAI 2024 2024-07-17 [Valletta, Malta]
Series:
Communications in Computer and Information Science 1865-0929 1865-0937, 2153 CCIS
Identifiers
MTMT: 35200055
ISBN:
9783031637865
Chapters
Gallée L. et al. Evaluating the Explainability of Attributes and Prototypes for a Medical Classification Model. (2024) In: 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 pp. 43-56
Amara Kenza et al. Challenges and Opportunities in Text Generation Explainability. (2024) In: 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 pp. 244-264
Rutinowski Jerome et al. Benchmarking Trust: A Metric for Trustworthy Machine Learning. (2024) In: 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 pp. 287-307
Huang Qi et al. Beyond the Veil of Similarity: Quantifying Semantic Continuity in Explainable AI. (2024) In: 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 pp. 308-331
Llorente Oscar et al. Evaluating Neighbor Explainability for Graph Neural Networks. (2024) In: 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 pp. 383-402
Perotti Alan et al. Explainability, Quantified: Benchmarking XAI Techniques. (2024) In: 2nd World Conference on Explainable Artificial Intelligence, xAI 2024 pp. 421-444
Citation styles:
IEEE
ACM
APA
Chicago
Harvard
CSL
Copy
Print
2025-04-24 12:42
×
Export list as bibliography
Citation styles:
IEEE
ACM
APA
Chicago
Harvard
Print
Copy