Iterative embedding and reweighting of complex networks reveals community structure

Kovács, Bianka [Kovács, Bianka (Komplex rendszere...), szerző] Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Kojaku, Sadamori; Palla, Gergely ✉ [Palla, Gergely (Elméleti és matem...), szerző] Egészségügyi Menedzserképző Központ (SE / EKK); Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Fortunato, Santo

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: SCIENTIFIC REPORTS 2045-2322 14 (1) Paper: 17184 , 17 p. 2024
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Azonosítók
Támogatások:
  • (Open access funding provided by Semmelweis University)
Graph embeddings learn the structure of networks and represent it in low-dimensional vector spaces. Community structure is one of the features that are recognized and reproduced by embeddings. We show that an iterative procedure, in which a graph is repeatedly embedded and its links are reweighted based on the geometric proximity between the nodes, reinforces intra-community links and weakens inter-community links, making the clusters of the initial network more visible and more easily detectable. The geometric separation between the communities can become so strong that even a very simple parsing of the links may recover the communities as isolated components with surprisingly high precision. Furthermore, when used as a pre-processing step, our embedding and reweighting procedure can improve the performance of traditional community detection algorithms.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-03-30 00:02