Inhibition of PHLDA3 expression in human SOD1 amyotrophic lateral sclerosis astrocytes protects against neurotoxicity

Szebényi, Kornélia [Szebényi, Kornélia (Őssejtbiológia), szerző] Molekuláris Élettudományi Intézet (HRN TTK); Vargová, Ingrid; Petrova, Veselina; Turečková, Jana; Gibbons, George M; Řehořová, Monika; Abdelgawad, Mai; Sándor, Alexandra [Sándor, Alexandra (Sejtbiológia), szerző] Doktori Iskola (SE); Marekova, Dana; Kwok, Jessica C F; Jendelová, Pavla; Fawcett, James W; Lakatos, András ✉

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: BRAIN COMMUNICATIONS 2632-1297 6 (4) Paper: fcae244 , 14 p. 2024
  • SJR Scopus - Psychiatry and Mental Health: D1
Azonosítók
Támogatások:
  • (FK 142223)
Pleckstrin homology-like domain family A-member 3 (PHLDA3) has recently been identified as a player in adaptive and maladaptive cellular stress pathways. The outcome of PHLDA3 signalling was shown to vary across different cell types and states. It emerges that its expression and protein level are highly increased in amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Whether it orchestrates a supportive or detrimental function remains unexplored in the context of neurodegenerative pathologies. To directly address the role of PHLDA3 in healthy and ALS astrocytes, we used overexpression and knockdown strategies. We generated cultures of primary mouse astrocytes and also human astrocytes from control and ALS patient-derived induced pluripotent stem cells harbouring the superoxide-dismutase 1 mutation. Then, we assessed astrocyte viability and the impact of their secretome on oxidative stress responses in human stem cell-derived cortical and spinal neuronal cultures. Here, we show that PHLDA3 overexpression or knockdown in control astrocytes does not significantly affect astrocyte viability or reactive oxygen species production. However, PHLDA3 knockdown in ALS astrocytes diminishes reactive oxygen species concentrations in their supernatants, indicating that PHLDA3 can facilitate stress responses in cells with altered homeostasis. In support, supernatants of PHLDA3-silenced spinal ALS and even control spinal astrocytes with a lower PHLDA3 protein content could prevent sodium arsenite-induced stress granule formation in spinal neurons. Our findings provide evidence that reducing PHLDA3 levels may transform astrocytes into a more neurosupportive state relevant to targeting non-cell autonomous ALS pathology.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-03-30 07:09