Fluid statics of a self-gravitating isothermal sphere of van der Waals' gas

Giordano, Domenico ✉; Amodio, Pierluigi; Iavernaro, Felice; Mazzia, Francesca; Ván, Péter [Ván, Péter (Nemegyensúlyi ter...), szerző] Energetikai Gépek és Rendszerek Tanszék (BME / GPK); Nehézion-fizikai kutatócsoport (RMI / ELMO); Szücs, Mátyás [Szücs, Mátyás (kontinuum-termodi...), szerző] Energetikai Gépek és Rendszerek Tanszék (BME / GPK); Nehézion-fizikai kutatócsoport (RMI / ELMO)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: PHYSICS OF FLUIDS 1070-6631 1089-7666 36 (5) Paper: 056127 , 23 p. 2024
  • X. Földtudományok Osztálya: A
  • SJR Scopus - Computational Mechanics: D1
Azonosítók
Szakterületek:
  • Természettudományok
We subject to scrutiny the physical consistency of adopting the perfect-gas thermodynamic model within self-gravitation circumstances by studying the fluid statics of a self-gravitating isothermal sphere with the van der Waals' thermodynamic model, whose equation of state features well-known terms that account for molecular attraction and size. The governing equations are formulated for any thermodynamic model with two intensive degrees of freedom, applied with the van der Waals' model and solved numerically in nondimensional form by finite-difference algorithms. After a brief summary of thermodynamic characteristics possessed by the van der Waals' model, and relevant to the present study, we proceed to the description of the results in terms of comparative graphs illustrating radial profiles of density, pressure, and gravitational field. We complement them with graphs that compare the dependence of central and wall densities on gravitational number for both perfect-gas and van der Waals' models and that attest dramatically and unequivocally how the presence of molecular-attraction and -size terms removes questionable fluid-statics results systematically found accompanying the perfect-gas model in standard treatments. We also describe, within a very brief and preliminary digression, how the sanitizing action of the mentioned terms affects the thermodynamics of the isothermal sphere by providing evidence of how the gravitational correction to entropy corresponding to the van der Waals' model makes sure that there is no risk of gravothermal catastrophes, negative specific heats, and thermal instabilities. Furthermore, we investigate the phenomenology related to self-gravitationally induced both liquid-gas phase equilibria and metastable-gas states and we describe how they arise naturally and self-consistently from the governing equations. We conclude with a summary of the main results and with a challenging proposal of future work meant to attempt a revalorization the perfect-gas model. © 2024 Author(s).
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2024-11-07 08:35