Single-cell classification based on label-free high-resolution optical data of cell adhesion kinetics

Kovacs, Kinga Dora [Kovács, Kinga Dóra (fizika), szerző] Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Műszaki Fizikai és Anyagtudományi Intézet (HUN-REN EK); Nanobioszenzorika Laboratórium (HUN-REN EK / MFA); Beres, Balint [Béres, Bálint (mérnökinformatikus), szerző] Automatizálási és Alkalmazott Informatikai Tanszék (BME / VIK); Nanobioszenzorika Laboratórium (HUN-REN EK / MFA); Kanyo, Nicolett [Kanyó, Nicolett (nanobioszenzorika), szerző] Nanobioszenzorika Laboratórium (HUN-REN EK / MFA); Szabó, Balint [Szabó, Bálint (Biológiai fizika), szerző] Biológiai Fizika Tanszék (ELTE / TTK / FizCsill_I); Peter, Beatrix [Péter, Beatrix (Bioszenzorika), szerző] Nanobioszenzorika Laboratórium (HUN-REN EK / MFA); Bősze, Szilvia [Bősze, Szilvia (Peptidkémia), szerző] HUN-REN-ELTE Peptidkémiai Kutatócsoport (ELTE / TTK / KI); Szekacs, Inna [Székács, Inna (nanobioszenzorika), szerző] Nanobioszenzorika Laboratórium (HUN-REN EK / MFA); Horvath, Robert ✉ [Horváth, Róbert (Bioszenzorok), szerző] Nanobioszenzorika Laboratórium (HUN-REN EK / MFA)

Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent: SCIENTIFIC REPORTS 2045-2322 14 (1) Paper: 11231 , 13 p. 2024
  • Szociológiai Tudományos Bizottság: A nemzetközi
  • Regionális Tudományok Bizottsága: B nemzetközi
  • SJR Scopus - Multidisciplinary: D1
Azonosítók
Szakterületek:
  • Egyéb műszaki tudományok és technológiák
Selecting and isolating various cell types is a critical procedure in many applications, including immune therapy, regenerative medicine, and cancer research. Usually, these selection processes involve some labeling or another invasive step potentially affecting cellular functionality or damaging the cell. In the current proof of principle study, we first introduce an optical biosensor-based method capable of classification between healthy and numerous cancerous cell types in a label-free setup. We present high classification accuracy based on the monitored single-cell adhesion kinetic signals. We developed a high-throughput data processing pipeline to build a benchmark database of ~ 4500 single-cell adhesion measurements of a normal preosteoblast (MC3T3-E1) and various cancer (HeLa, LCLC-103H, MDA-MB-231, MCF-7) cell types. Several datasets were used with different cell-type selections to test the performance of deep learning-based classification models, reaching above 70–80% depending on the classification task. Beyond testing these models, we aimed to draw interpretable biological insights from their results; thus, we applied a deep neural network visualization method (grad-CAM) to reveal the basis on which these complex models made their decisions. Our proof-of-concept work demonstrated the success of a deep neural network using merely label-free adhesion kinetic data to classify single mammalian cells into different cell types. We propose our method for label-free single-cell profiling and in vitro cancer research involving adhesion. The employed label-free measurement is noninvasive and does not affect cellular functionality. Therefore, it could also be adapted for applications where the selected cells need further processing, such as immune therapy and regenerative medicine.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2024-12-13 00:32