Development of a long noncoding RNA-based machine learning model to predict COVID-19 in-hospital mortality

Devaux, Yvan ✉; Zhang, Lu; Lumley, Andrew I.; Karaduzovic-Hadziabdic, Kanita; Mooser, Vincent; Rousseau, Simon; Shoaib, Muhammad; Satagopam, Venkata; Adilovic, Muhamed; Srivastava, Prashant Kumar; Emanueli, Costanza; Martelli, Fabio; Greco, Simona; Badimon, Lina; Padro, Teresa; Lustrek, Mitja; Scholz, Markus; Rosolowski, Maciej; Jordan, Marko; Brandenburger, Timo; Benczik, Bettina [Benczik, Bettina (Bioinformatika), szerző] Farmakológiai és Farmakoterápiás Intézet (SE / AOK / I); HUN-REN-SE Rendszerfarmakológiai Kutatócsoport (SE / AOK / I / FFI); Agg, Bence [Ágg, Bence (Farmakológia), szerző] Farmakológiai és Farmakoterápiás Intézet (SE / AOK / I); HUN-REN-SE Rendszerfarmakológiai Kutatócsoport (SE / AOK / I / FFI); Ferdinandy, Peter [Ferdinandy, Péter (Farmakológia, mol...), szerző] Farmakológiai és Farmakoterápiás Intézet (SE / AOK / I); HUN-REN-SE Rendszerfarmakológiai Kutatócsoport (SE / AOK / I / FFI); Vehreschild, Jörg Janne; Lorenz-Depiereux, Bettina; Dörr, Marcus; Witzke, Oliver; Sanchez, Gabriel; Kul, Seval; Baker, Andy H.; Fagherazzi, Guy; Ollert, Markus; Wereski, Ryan; Mills, Nicholas L.; Firat, Hüseyin

Angol nyelvű Sokszerzős vagy csoportos szerzőségű szakcikk (Folyóiratcikk) Tudományos
Megjelent: NATURE COMMUNICATIONS 2041-1723 2041-1723 15 (1) Paper: 4259 , 12 p. 2024
  • Regionális Tudományok Bizottsága: A nemzetközi
  • SJR Scopus - Biochemistry, Genetics and Molecular Biology (miscellaneous): D1
Azonosítók
Támogatások:
  • (RRF-2.3.1-21-2022-00003)
  • (2020-1.1.5-GYORSÍTÓSÁV-2021-00011)
  • (2020-1.1.6-JOVO-2021-00013)
Tools for predicting COVID-19 outcomes enable personalized healthcare, potentially easing the disease burden. This collaborative study by 15 institutions across Europe aimed to develop a machine learning model for predicting the risk of in-hospital mortality post-SARS-CoV-2 infection. Blood samples and clinical data from 1286 COVID-19 patients collected from 2020 to 2023 across four cohorts in Europe and Canada were analyzed, with 2906 long non-coding RNAs profiled using targeted sequencing. From a discovery cohort combining three European cohorts and 804 patients, age and the long non-coding RNA LEF1-AS1 were identified as predictive features, yielding an AUC of 0.83 (95% CI 0.82–0.84) and a balanced accuracy of 0.78 (95% CI 0.77–0.79) with a feedforward neural network classifier. Validation in an independent Canadian cohort of 482 patients showed consistent performance. Cox regression analysis indicated that higher levels of LEF1-AS1 correlated with reduced mortality risk (age-adjusted hazard ratio 0.54, 95% CI 0.40–0.74). Quantitative PCR validated LEF1-AS1’s adaptability to be measured in hospital settings. Here, we demonstrate a promising predictive model for enhancing COVID-19 patient management.
Hivatkozás stílusok: IEEEACMAPAChicagoHarvardCSLMásolásNyomtatás
2025-04-14 06:23