mtmt
Magyar Tudományos Művek Tára
XML
JSON
Átlépés a keresőbe
In English
Idézők
/
Idézések
FEMaLe: The use of machine learning for early diagnosis of endometriosis based on patient self-reported data—Study protocol of a multicenter trial
Balogh, Dora B. [Balogh, Dóra Bianka (Molekuláris biológia), szerző] Szülészeti és Nőgyógyászati Klinika (SE / AOK / K)
;
Hudelist, Gernot
;
Bļizņuks, Dmitrijs
;
Raghothama, Jayanth
;
Becker, Christian M.
;
Horace, Roman
;
Krentel, Harald
;
Horne, Andrew W.
;
Bourdel, Nicolas
;
Marki, Gabriella
;
Tomassetti, Carla
;
Kirk, Ulrik Bak
;
Acs, Nandor [Ács, Nándor (Szülészet-nőgyógy...), szerző] Szülészeti és Nőgyógyászati Klinika (SE / AOK / K)
;
Bokor, Attila ✉ [Bokor, Attila (szülészet, nőgyóg...), szerző] Szülészeti és Nőgyógyászati Klinika (SE / AOK / K)
Angol nyelvű Szakcikk (Folyóiratcikk) Tudományos
Megjelent:
PLOS ONE 1932-6203
19
(5)
Paper: e0300186
, 9 p.
2024
Pedagógiai Tudományos Bizottság: A
Szociológiai Tudományos Bizottság: A nemzetközi
Regionális Tudományok Bizottsága: B nemzetközi
SJR Scopus - Multidisciplinary: Q1
Azonosítók
MTMT: 34852421
DOI:
10.1371/journal.pone.0300186
WoS:
001245183200146
Scopus:
85192810385
PubMed:
38722932
Támogatások:
Finding Endometriosis using Machine Learning (FEMaLe) - European Union’s Horizon 2020(101017562) Támogató: EU
Idézők (2)
Idézett közlemények (5)
Hivatkozás stílusok:
IEEE
ACM
APA
Chicago
Harvard
CSL
Másolás
Nyomtatás
2025-03-29 22:19
×
Lista exportálása irodalomjegyzékként
Hivatkozás stílusok:
IEEE
ACM
APA
Chicago
Harvard
Nyomtatás
Másolás