Classification of colorectal primer carcinoma from normal colon with mid‐infrared spectra

Borkovits, B. [Borkovits, Bendegúz (Tudományos adatan...), author]; Kontsek, E. ✉ [Kontsek, Endre (daganatkutatás), author] Patológiai, Igazságügyi és Biztosítási Orvostan... (SU / FM / I); Pesti, A. [Pesti, Adrián István (patológia), author] Patológiai, Igazságügyi és Biztosítási Orvostan... (SU / FM / I); Gordon, P. [Gordon, Péter (Hibaanalitika), author] Department of Electronics Technology (BUTE / FEEI); Gergely, S. [Gergely, Szilveszter (infravörös spektr...), author] Department of Applied Biotechnology and Food Sc... (BUTE / FCTB); Csabai, I. [Csabai, István (Statisztikus fizika), author] Department of Physics of Complex Systems (ELTE / ELU FoS); Kiss, A. [Kiss, András (Pathológia, hepat...), author] Patológiai, Igazságügyi és Biztosítási Orvostan... (SU / FM / I); Pollner, P. ✉ [Pollner, Péter (Elméleti és matem...), author] Egészségügyi Menedzserképző Központ (SU / DHS); Department of Biological Physics (ELTE / ELU FoS)

English Article (Journal Article) Scientific
Published: JOURNAL OF CHEMOMETRICS 0886-9383 1099-128X 38 (7) Paper: e3542 , 15 p. 2024
  • SJR Scopus - Analytical Chemistry: Q3
Identifiers
Fundings:
  • (K_18 128881) Funder: Nemzeti Kutatási, Fejlesztési és Innovációs Hivatal
  • (K128780) Funder: NR-DIO
  • MILAB(RRF-2.3.1-21-2022-00004) Funder: NRDIO
  • SECURED Project(10109571 SECURED Project)
  • Nemzeti Gyógyszerkutatási és Fejlesztési Laboratórium (PharmaLab)(RRF-2.3.1-21-2022-00015) Funder: NRDIO
Subjects:
  • Machine learning, statistical data processing and applications using signal processing (e.g. speech, image, video)
  • Neuroimaging and computational neuroscience
  • Medical pathology
In this project, we used formalin‐fixed paraffin‐embedded (FFPE) tissue samples to measure thousands of spectra per tissue core with Fourier transform mid‐infrared spectroscopy using an FT‐IR imaging system. These cores varied between normal colon (NC) and colorectal primer carcinoma (CRC) tissues. We created a database to manage all the multivariate data obtained from the measurements. Then, we applied classifier algorithms to identify the tissue based on its yielded spectra. For classification, we used the random forest, a support vector machine, XGBoost, and linear discriminant analysis methods, as well as three deep neural networks. We compared two data manipulation techniques using these models and then applied filtering. In the end, we compared model performances via the sum of ranking differences (SRD).
Citation styles: IEEEACMAPAChicagoHarvardCSLCopyPrint
2025-04-26 08:30