Sustainable composite structures in building construction are assembled using demountable
structural elements that can be reused in the circular economy. The current research
and development project, in cooperation with Budapest University of Technology and
Economics and KeSZ Group, bim.GROUP Ltd., Hungary, aims to design a novel demountable
steel-concrete composite slab and frame system for buildings. The key component of
this construction is the demountable shear connector. In the current research, novel
bolted shear connectors with embedded bolts and threaded rods are developed and studied
that can fit the applied technology of the industrial partner. One of the leading
aspects of this connection is the consideration of bolt hole clearance, since it occurs
initial slip and stiffness reduction of the composite beam. In the first phase of
the research program, demountable and economical structural details were developed,
which can reduce the stiffness reduction with the proper resistance and ductility
features. To study the behavior of these shear connections, a push-out experimental
program was designed and completed in March and April 2023. It is observed that novel
shear connectors have a proper behavior with sufficient resistance and ductility,
which is applicable according to the Eurocode 4 standard and fits the objectives of
the research and development project. In the paper, the developed structural details
and the push-out experimental program are presented with general results and statements
besides a detailed evaluation of a specified specimen type.